New Jersey Center for Teaching and Learning Progressive Mathematics Initiative ${ }^{\text {® }}$

This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and teachers.

These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering teachers to lead school improvement for the benefit of all students.

Click to go to website: www.njctl.org

Algebra II

Quadratic Functions

2014-10-14
www.njctl.org

Table of Content

Key Terms

Explain Characteristics of Quadratic Functions

Combining Transformations (review)
Graph Quadratic Functions
Solve Quadratic Equations by Graphing
Solve Quadratic Equations by Factoring
Application of Zero Product Property
Solve Quadratic Equations Using Square Roots
Solve Quadratic Equations by Completing the Square
Solve Quadratic Equations using the Quadratic Formula
The Discriminant
Vertex Form
More Application Problems using Quadratics

Key Terms

Return to
Table of
Contents

Key Terms

Quadratic Equation: An equation that can be written in the standard form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$. Where a, b and c are real numbers and a does not equal 0 .

$$
e x: \quad 3 x^{2}+5 x-12=0
$$

Quadratic Function: Any function that can be written in the form $y=a x^{2}+b x+c$. Where a, b and c are real numbers and a does not equal 0 .

$$
e x: \quad y=-2 x^{2}+10 x+7
$$

Key Terms

Parabola: The curve result of graphing a quadratic equation

$$
y=2 x^{2}+5 x-1
$$

Key Terms

Zero(s) of a Function: An x value that makes the function equal zero. Also called a "root," "solution" or "x-intercept"

Key Terms

Vertex: The highest or lowest point on a parabola.

Minimum Value: The y-value of the vertex if a>0 and the parabola opens upward

Maximum Value: The y-value of the vertex if a < 0 and the parabola opens downward

Key Terms

Axis of symmetry: The vertical line that divides a parabola into two symmetrical halves

Explain

Characteristics

 of Quadratic FunctionsReturn to
Table of
Contents

Characteristics of Quadratics

Remember: A quadratic equation is any equation that can be written in the form $a x^{2}+b x+c=0$
Where a, b, and c are real numbers and $a \neq 0$

Question 1: Is $2 x^{2}=x+4$ a quadratic equation?

Question 2: Is $3 x-4=x+1$ a quadratic equation?

Characteristics of Quadratics

The form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is called the standard form of a quadratic equation.

The standard form is not unique.
For example,

$$
x^{2}-x+1=0 \text { can also be written }-x^{2}+x-1=0 .
$$

Also,

$$
4 x^{2}-2 x+2=0 \text { can be written } 2 x^{2}-x+1=0
$$

Standard Form

Practice writing quadratic equations in standard form: (Simplify if possible.)

Write $2 x^{2}=x+4$ in standard form:

Standard Form

Write $3 x=-x^{2}+7$ in standard form, if possible:

Standard Form

Write $6 x^{2}-6 x=12$ in standard form and simplify, if possible:

Standard Form

Write $3 x-2=5 x$ in standard form:

Standard Form

Similar to Quadratic Equations, the standard form of a Quadratic Function is $y=a z+b x+c$, where $a \neq 0$.
Notice, a can be positive or negative.

$$
\begin{aligned}
& y=-3 x^{2}+4 x-10 \\
& y=5 x^{2}-9 \\
& y=x^{2} \\
& y=\frac{1}{4} x^{2}+5 x-20
\end{aligned}
$$

Graph

When graphed, a quadratic function will make the shape of a parabola.
The parabola will open upward if a > 0 or downward if a <0.

Domain

The domain of a quadratic function is all real numbers.

Range

To determine the range of a quadratic function, ask yourself two questions:
Is the vertex a minimum or maximum?
What is the y-value of the vertex?
If the vertex is a minimum, then the range is all real numbers greater than or equal to the y-value of the vertex.

The range of this quadratic is

Range

If the vertex is a maximum, then the range is all real numbers less than or equal to the y-value of the vertex.

The range of this quadratic is $(-\infty, 10]$

Axis of Symmetry

An axis of symmetry (also known as a line of symmetry) will divide the parabola into mirror images.
The line of symmetry is always a vertical line of the form $x=\frac{-b}{2 a}$

$$
y=2 x^{2}-8 x+2 \longrightarrow x=\frac{-(-8)}{2(2)}
$$

$$
x=2
$$

X-Intercepts

The x-intercepts are the points at which a parabola intersects the x-axis. These points are also known as zeros rootsor solutions and solution sets. Each quadratic function will have 0, 1, or 2 or real solutions.

2 real solutions

1 If a parabola opens downward, the vertex is the highest value on the parabola.

True

False

2 If a parabola opens upward then...

$$
\begin{array}{ll}
\text { A } & \text { a>0 } \\
\text { B } & \text { a<0 } \\
\text { C } & \mathbf{a}=0
\end{array}
$$

3 The vertical line that divides a parabola into two symmetrical halves is called...

A discriminant
B quadratic equation
C axis of symmetry
D vertex
E maximum

4 Which of the following shows a quadratic equation correctly written in standard form?

A $3 x-5 x^{2}+8=0$
B $3 x-5 x+8=0$
C $-5 x^{2}+8=-3 x$
D $-5 x^{2}+3 x+8=0$
E $3 x=5 x^{2}-8$

5 What is the equation for the axis of symmetry for the quadratic function $y=2 x^{2}+12 x-7$?

A $x=12$
B $x=-6$
C $x=2$
D $x=-3$
E $\quad x=-7$

6 What is the domain of the quadratic function below?

A $[-4, \infty)$
B $[-2,2]$
C $(-\infty, 4]$
D \mathbb{R}

What is the range of the quadratic function below?

Graph Quadratic Functions

Return to Table of Contents

Graph by Following Five Steps:

Step 1 - Find Axis of Symmetry
Step 2 - Find Vertex
Step 3 - Find y-intercept
Step 4 - Locate another point
Step 5 - Reflect and Connect

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 1: Find the Axis of Symmetry

> Recall the Formula: $x=\frac{-b}{2 a}$ $\mathrm{a}=3$ $\mathrm{~b}=-6$ $\mathrm{x}=\frac{-(-6)}{2(3)}=\frac{6}{6}=1$

Therefore, the axis of symmetry is $x=1$.

Graphing

Task: Graph $\mathrm{y}=3 \mathrm{x}^{2}-6 \mathrm{x}+1$

Step 2: To find the vertex, substitute $\frac{-b}{2 a}$ for x in the equation and find y.

$$
\begin{aligned}
& y=3 x^{2}-6 x+1 \\
& y=3(1)^{2}+-6(1)+1 \\
& y=3-6+1 \\
& y=-2 \\
& \text { Vertex }=(1,-2)
\end{aligned}
$$

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 3: Find the y-intercept.
The y-intercept occurs when $x=0$, so substitute zero for x in the equation.

$$
\begin{aligned}
& y=3 x^{2}-6 x+1 \\
& y=3(0)^{2}+-6(0)+1 \\
& y=0-0+1 \\
& y=1 \\
& y \text { intercept }=(0,1)
\end{aligned}
$$

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 4: Plot an additional point.
Choose an x-value to substitute into the function.

$$
\begin{aligned}
& \text { Using } x=-1 \\
& y=3 x^{2}-6 x+1 \\
& y=3(-1 f+-6(-1)+1 \\
& y=3+6+1 \\
& y=10 \\
& \text { point }=(-1,10)
\end{aligned}
$$

Graphing

$$
\text { Task: Graph } y=3 x^{2}-6 x+1
$$

Step 5: Using the axis of symmetry, reflect the points to get the other half of the parabola. Connect with a smooth curve.

