#### Graph a function of the form $y = ax^2$

**Graph**  $y = 2x^2$ . Compare the graph with the graph of  $y = x^2$ .

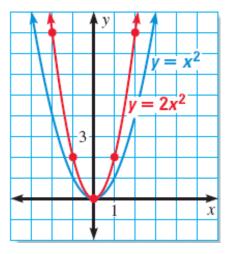
# SOLUTION

EXAMPLE 1

**STEP 1** Make a table of values for  $y = 2x^2$ .

| x | -2 | -1 | 0 | 1 | 2 |
|---|----|----|---|---|---|
| у | 8  | 2  | 0 | 2 | 8 |

- **STEP 2** Plot the points from the table.
- **STEP 3** Draw a smooth curve through the points.



Graphing Quadratic Functions in Standard Form

#### Graph a function of the form $y = ax^2$

**STEP 4** Compare the graphs of  $y = 2x^2$  and  $y = x^2$ . Both open up and have the same vertex and axis of symmetry. The graph of  $y = 2x^2$  is narrower than the graph of  $y = x^2$ .

EXAMPLE 1

Graphing Quadratic Functions in Standard Form Graph a function of the form  $y = ax^2 + c$ 

**Graph**  $y = -\frac{1}{2}x^2 + 3$  **Compare the graph with the** graph of  $y = x^2$ 

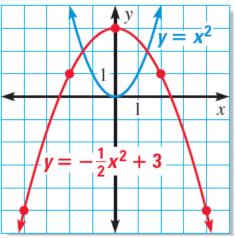
# SOLUTION

EXAMPLE 2

**STEP 1** Make a table of values for  $y = -\frac{1}{2}x^2 + 3$ 

| x | -4 | -2 | 0 | 2 | 4  |
|---|----|----|---|---|----|
| у | -5 | 1  | 3 | 1 | -5 |

STEP 2 Plot the points from the table.STEP 3 Draw a smooth curve through the points.



**Graph a function of the form**  $y = ax^2$ 

EXAMPLE 2

**STEP 4** Compare the graphs of  $y = -\frac{1}{2}x^2 + 3$ and  $y = x^2$ . Both graphs have the same axis of symmetry. However, the graph of y = down and is wider than the graph of  $y = x^2$ . Also, its vertex is 3 units higher. Graph the function. Compare the graph with the graph of  $y = x^2$ .

**1.**  $y = -4x^2$ 

**GUIDED PRACTICE** 

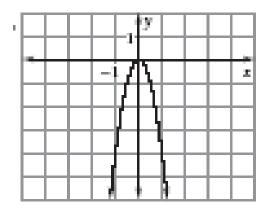
# SOLUTION

**STEP 1** Make a table of values for  $y = -4x^2$ .

| X | - 2  | - 1 | 0 | 2    | - 1 |
|---|------|-----|---|------|-----|
| Y | - 16 | _ 4 | 0 | - 16 | - 4 |

### **STEP 2** Plot the points from the table.

- **STEP 3** Draw a smooth curve through the points.
- **STEP 4** Compare the graphs of  $y = -4x^2$  and  $y = x^2$ .



### **ANSWER**

**GUIDED PRACTICE** 

# Same axis of symmetry and vertex, opens down, and is narrower

#### **2.** $y = -x^2 - 5$

**GUIDED PRACTICE** 

# SOLUTION

**STEP 1** Make a table of values for  $y = -x^2 - 5$ .

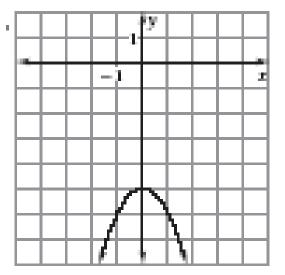
| X | - 2 | - 1 | 0   | 2   | - 1 |
|---|-----|-----|-----|-----|-----|
| Y | - 9 | - 6 | - 5 | - 9 | - 6 |

**STEP 2** Plot the points from the table.

- **STEP 3** Draw a smooth curve through the points.
- **STEP 4** Compare the graphs of  $y = -x^2 5$  and  $y = x^2$ .



for Examples 1 and 2



### **ANSWER**

# Same axis of symmetry, vertex is shifted down 5 units, and opens down

#### **GUIDED PRACTICE**

3. 
$$f(x) = \frac{1}{4}x^2 + 2$$
  
SOLUTION

**STEP 1** Make a table of values for  $f(x) = \frac{1}{4}x^2 + 2$ 

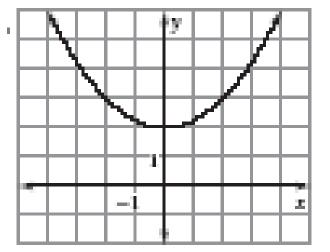
| X | - 4 | - 2 | 0 | - 4 | 2 |
|---|-----|-----|---|-----|---|
| Y | - 2 | 4   | 2 | 6   | 4 |

- **STEP 2** Plot the points from the table.
- **STEP 3** Draw a smooth curve through the points.
- **STEP 4** Compare the graphs of  $f(x) = \frac{1}{4}x^2 + 2$ and  $y = x^2$ .

**GUIDED PRACTICE** 

for Examples 1 and 2

Graphing Quadratic Functions in Standard Form



#### **ANSWER**

# Same axis of symmetry, vertex is shifted up 2 units, opens up, and is wider

Graphing Quadratic Functions in Standard Form Graph a function of the form  $y = ax^2 + bx + c$ 

**Graph** 
$$y = 2x^2 - 8x + 6$$
. **SOLUTION**

EXAMPLE 3

**STEP 1** Identify the coefficients of the function. The coefficients are a = 2, b = -8, and c = 6. Because a > 0, the parabola opens up.

**STEP 2** Find the vertex. Calculate the *x* - coordinate.

$$x = -\frac{b}{2a} = -\frac{(-8)}{2(2)} = 2$$

Then find the y - coordinate of the vertex.  $y = 2(2)^2 - 8(2) + 6 = -2$ 

So, the vertex is (2, -2). Plot this point.

Graphing Quadratic Functions in Standard Form Graph a function of the form  $y = ax^2 + bx + c$ 

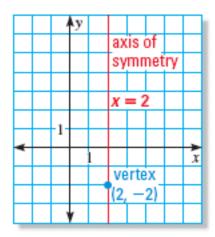
**STEP 3** Draw the axis of symmetry x = 2. **STEP 4** Identify the *y* - intercept *c*, which is 6. Plot the point (0, 6). Then reflect this point in the axis of symmetry to plot another point, (4, 6).

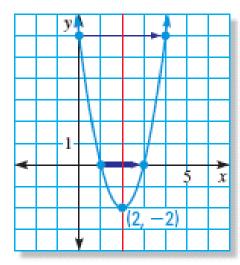
**EXAMPLE** 3

**STEP 5** Evaluate the function for another value of x, such as x = 1.

 $y = 2(1)^2 - 8(1) + 6 = 0$ 

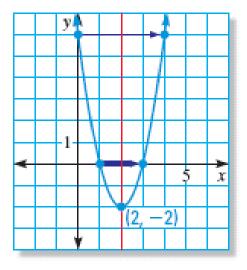
Plot the point (1, 0) and its reflection (3, 0) in the axis of symmetry.







#### **STEP 6** Draw a parabola through the plotted points.



# Graph the function. Label the vertex and axis of symmetry.

for Example 3

4. 
$$y = x^2 - 2x - 1$$

**GUIDED PRACTICE** 

# SOLUTION

**STEP 1** Identify the coefficients of the function. The coefficients are a = 1, b = -2, and c = -1. Because a > 0, the parabola opens up.

**STEP 2** Find the vertex. Calculate the *x* - coordinate.

$$x = \frac{b}{2a} = -\frac{(-2)}{2(1)} = \frac{b}{2}$$

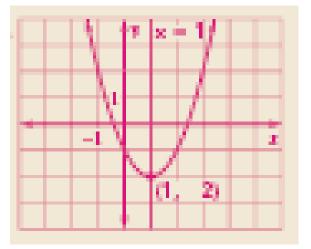
Then find the *y* - coordinate of the vertex.  $y = 1^2 - 2 \cdot 1 + 1 = -2$ 

#### So, the vertex is (1, -2). Plot this point.

**GUIDED PRACTICE** 

**STEP 3** Draw the axis of symmetry x = 1.

for Example 3



#### 5. $y = 2x^2 + 6x + 3$

**GUIDED PRACTICE** 

# SOLUTION

**STEP 1** Identify the coefficients of the function. The coefficients are a = 2, b = 6, and c = 3. Because a > 0, the parabola opens up.

for Example 3

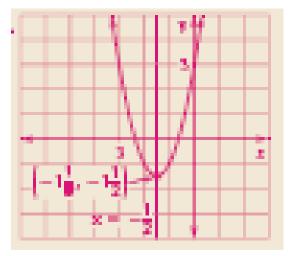
**STEP 2** Find the vertex. Calculate the *x* - coordinate.  $x = \frac{-b}{2a} = \frac{-6}{2 \cdot 2} = \frac{-3}{2}$ 

Then find the *y* - coordinate of the vertex.

$$y = 2 \cdot \left(\frac{-3}{2}\right) + 6 \cdot \left(\frac{-3}{2}\right) + 3 = -9$$
  
So, the vertex is  $\frac{-3}{2}$ , -9. Plot this point.

#### **GUIDED PRACTICE** for Example 3

**STEP 3** Draw the axis of symmetry  $x = \frac{-3}{2}$ 



# 6. $f(x) = -\frac{1}{3}x^2 - 5x + 2$ SOLUTION

GUIDED PRACTICE

**STEP 1** Identify the coefficients of the function. The coefficients are  $a = -\frac{1}{3}$ , b = -5, and c = 2. Because a > 0, the parabola opens up.

for Example 3

**STEP 2** Find the vertex. Calculate the *x* - coordinate.

$$x = \frac{-b}{2a} = \frac{(-5)}{2 \cdot \left(-\frac{3}{2}\right)} = \frac{15}{2}$$

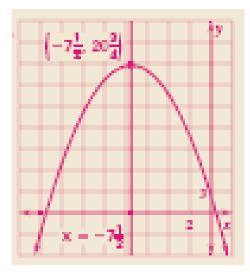
Then find the *y* - coordinate of the vertex.

# $y = -\frac{3}{2}\left(\frac{15}{2}\right) - 5\left(\frac{15}{2}\right) + 2 = -\frac{76}{2}$

for Example 3

So, the vertex is  $\frac{15}{2}$ ,  $\frac{-76}{2}$ . Plot this point.

**STEP 3** Draw the axis of symmetry  $x = \frac{15}{2}$ 



**GUIDED PRACTICE** 

Find the minimum or maximum value

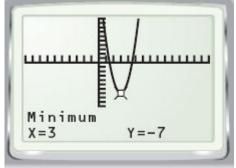
Tell whether the function  $y = 3x^2 - 18x + 20$  has a *minimum value* or a *maximum value*. Then find the minimum or maximum value.

SOLUTION

EXAMPLE 4

Because *a* > 0, the function has a minimum value. To find it, calculate the coordinates of the vertex.

$$x = -\frac{b}{2a} = -\frac{(-18)}{2a} = 3$$
$$y = 3(3)^2 - 18(3) + 20 = -7$$



#### ANSWER

The minimum value is y = -7. You can check the answer on a graphing calculator.

#### Solve a multi-step problem

#### Go - Carts

EXAMPLE 5

A go-cart track has about 380 racers per week and charges each racer \$35 to race. The owner estimates that there will be 20 more racers per week for every \$1 reduction in the price per racer. How can the owner of



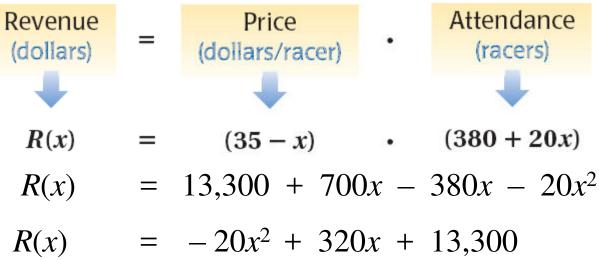
per racer. How can the owner of the go-cart track maximize weekly revenue ?

#### Solve a multi-step problem

# SOLUTION

EXAMPLE 5

- **STEP 1** Define the variables. Let *x* represent the price reduction and *R*(*x*) represent the weekly revenue.
- STEP 2 Write a verbal model. Then write and simplify a quadratic function.



#### Solve a multi-step problem

**STEP 3** Find the coordinates (x, R(x)) of the vertex.

$$x = -\frac{b}{2a} = -\frac{320}{2(-20)} = 8$$
 Find *x* - coordinate.

 $R(8) = -20(8)^2 + 320(8) + 13,300 = 14,580$  Evaluate R(8).

#### ANSWER

EXAMPLE 5

The vertex is (8, 14,580), which means the owner should reduce the price per racer by \$8 to increase the weekly revenue to \$14,580.

# 7. Find the minimum value of $y = 4x^2 + 16x - 3$ . SOLUTION

Because *a* > 0, the function has a minimum value. To find it, calculate the coordinates of the vertex.

$$x = -\frac{b}{2a} = -\frac{16}{2a} = -2$$
$$y = 4(-2)^2 + 16(-2) - 3 = -19$$

## ANSWER

**GUIDED PRACTICE** 

The minimum value is y = -19. You can check the answer on a graphing calculator.

## 8. What If ? In Example 5, suppose each \$1 reduction in the price per racer brings in 40 more racers per week. How can weekly revenue be maximized?

## SOLUTION

**GUIDED PRACTICE** 

**STEP 1** Define the variables. Let *x* represent the price reduction and *R*(*x*) represent the weekly revenue.

STEP 2 Write a verbal model. Then write and simplify a quadratic function.

**GUIDED PRACTICE** 



 $R(x) = -20x^2 + 1020x + 13,300$ 

**STEP 3** Find the coordinates (x, R(x)) of the vertex.

$$x = -\frac{b}{2a} = -\frac{1020x}{2(-40)} = 12.5$$
 Find x - coordinate.

**Evaluate** *R*(12.75).

R(12.75) = -40(12.75) + 1020(12.75) + 13,300 = 19802.5

#### ANSWER

**GUIDED PRACTICE** 

The vertex is (12.75, 19,802.5), which means the owner should reduce the price per racer by \$12.75 to increase the weekly revenue to \$19,802.50.