Graph $y=-\frac{1}{4}(x+2)^{2}+5$.

SOLUTION

STEP 1 Identify the constants
$a=-\frac{1}{4}, h=-2$, and $k=5$.

Because $a<0$, the parabola opens down.
STEP 2 Plot the vertex
$(h, k)=(-2,5)$ and draw the axis of symmetry $x=-2$.

STEP 3 Evaluate the function for two values of x.

$$
\begin{aligned}
& x=0: y=-\frac{1}{4}(0+2)^{2}+5=4 \\
& x=2: y=-\frac{1}{4}(2+2)^{2}+5=1
\end{aligned}
$$

Plot the points $(0,4)$ and $(2,1)$ and their reflections in
 the axis of symmetry.
STEP 4 Draw a parabola through the plotted points.

Civil Engineering

The Tacoma Narrows Bridge in Washington has two towers that each rise 307 feet above the roadway and are connected by suspension cables as shown. Each cable can be modeled by the
 function.
$y=\frac{1}{7000}(x-1400)^{2}+27$
where x and y are measured in feet. What is the distance d between the two towers?

EXAMPLE 2

SOLUTION

The vertex of the parabola is (1400, 27). So, a cable's lowest point is 1400 feet from the left tower shown above. Because the heights of the two towers are the same, the symmetry of the parabola implies that the vertex is also 1400 feet from the right tower. So, the distance between the two towers is $d=2(1400)=2800$ feet.

GUIDED PRACTICE

Graph the function. Label the vertex and axis of symmetry.

1. $y=(x+2)^{2}-3$

SOLUTION

STEP 1 Identify the constants $a=1, h=-2$, and $k=-$ 3. Because $a>0$, the parabola opens up.

STEP 2 Plot the vertex $(h, k)=(-2,-3)$ and draw the axis of symmetry $x=-2$.

GUIDED PRACTICE

STEP 3 Evaluate the function for two values of x.

$$
\begin{aligned}
& x=0: y=(0+2)^{2}+-3=1 \\
& x=2: y=(2+2)^{2}-3=13
\end{aligned}
$$

Plot the points $(0,4)$ and $(2,1)$ and their reflections in the axis of symmetry.
STEP 4 Draw a parabola through the plotted points.

2. $y=-(x+1)^{2}+5$

SOLUTION

STEP 1 Identify the constants $a=1, h=-2$, and $k=-$ 3. Because $a<0$, the parabola opens down.

STEP 2 Plot the vertex $(h, k)=(-1,1)$ and draw the axis of symmetry $x=-1$.
STEP 3 Evaluate the function for two values of x.

$$
\begin{aligned}
& x=0: y=-(0+2)^{2}+5=4 \\
& x=2: y=-(0-2)^{2}+5=1
\end{aligned}
$$

Plot the points $(0,4)$ and $(2,1)$ and their reflections in the axis of symmetry.

STEP 4 Draw a parabola through the plotted points.

GUIDED PRACTICE

3. $f(x)=\frac{1}{2}(x-3)^{2}-4$

SOLUTION

STEP 1 Identify the constants $a=\frac{1}{2}, h=-3$, and $h=-4$.
Because $a>0$, the parabola opens up.
STEP 2 Plot the vertex $(h, k)=(-3,-4)$ and draw the axis of symmetry $x=-3$.
STEP 3 Evaluate the function for two values of x.

$$
\begin{aligned}
& x=0: f(x)=\frac{1}{2}(0-3)^{2}-4=\frac{5}{2} \\
& x=0: f(x)=\frac{1}{2}(2-3)^{2}-4=\frac{-3}{2}
\end{aligned}
$$

Plot the points $(0,4)$ and $(2,1)$ and their reflections in the axis of symmetry.
STEP 4 Draw a parabola through the plotted points.

GUIDED PRACTICE

4. WHAT IF? Suppose an architect designs a bridge with cables that can be modeled by $y=\frac{1}{6500}(x-1400)^{2}+27$ where \boldsymbol{x} and \boldsymbol{y} are measured in feet. Compare this function's graph to the graph of the function in Example 2.

SOLUTION

This graph is slightly steeper than the graph in Example 2. They both have the same vertex and axis of symmetry, and both open up.

Solution missing

Graph $y=2(x+3)(x-1)$.

SOLUTION

STEP 1 Identify the x-intercepts. Because $p=-3$ and $q=1$, the x - intercepts occur at the points $(-3,0)$ and $(1,0)$.
STEP 2 Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{-3+1}{2}=-1 \\
& y=2(-1+3)(-1-1)=-8
\end{aligned}
$$

STEP 3 Draw a parabola through the vertex and the points where the x-intercepts occur.

EXAMPLE 4

Football

The path of a placekicked football can be modeled by the function $y=-0.026 x(x-46)$ where x is the horizontal distance (in yards) and y is the corresponding height
 (in yards).
a. How far is the football kicked ?
b. What is the football's maximum height ?

EXAMPLE 4

SOLUTION

a. Rewrite the function as $y=-0.026(x-0)(x-46)$. Because $p=0$ and $q=46$, you know the x - intercepts are 0 and 46 . So, you can conclude that the football is kicked a distance of 46 yards.
b. To find the football's maximum height, calculate the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{0+46}{2}=23 \\
& y=-0.026(23)(23-46) \approx 13.8
\end{aligned}
$$

The maximum height is the \boldsymbol{y}-coordinate of the vertex, or about 13.8 yards.

Graph the function. Label the vertex, axis of symmetry, and x - intercepts.
5. $y=(x-3)(x-7)$

SOLUTION

STEP 1 Identify the x-intercepts. Because $p=3$ and $q=7$, the x-intercepts occur at the points $(3,0)$ and (7,0).
STEP 2 Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{3+1}{2}=-5 \\
& y=(5-3)(5-1)=-4
\end{aligned}
$$

So the vertex is $(5,-4)$

STEP 3 Draw a parabola through the vertex and the points where the x-intercepts occur.

6. $f(x)=2(x-4)(x+1)$

SOLUTION

STEP 1 Identify the x-intercepts. Because $p=4$ and $q=-1$, the x-intercepts occur at the points $(4,0)$ and $(-1,0)$.

STEP 2 Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{4+(-1)}{2}=\frac{3}{2} \\
& y=2\left(\frac{3}{2}-4\right)\left(\frac{3}{2}+1\right)=-\frac{25}{2}
\end{aligned}
$$

So the vertex is $\frac{3}{2}, \frac{25}{2}$

STEP 3 Draw a parabola through the vertex and the points where the x-intercepts occur.

$$
\text { 7. } y=-(x+1)(x-5)
$$

SOLUTION

STEP 1 Identify the x - intercepts. Because $p=-1$ and $q=5$, the x-intercepts occur at the points $(-1,0)$ and $(5,0)$.
STEP 2 Find the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{-1+5}{2}=-2 \\
& y=-(2+3)(2-1)=9
\end{aligned}
$$

So the vertex is $(2,9)$

STEP 3 Draw a parabola through the vertex and the points where the x-intercepts occur.

GUIDED PRACTICE

8. WHAT IF? In Example 4, what is the maximum height of the football if the football's path can be modeled by the function $y=-0.025 x(x-50)$?

SOLUTION

a. Rewrite the function as $y=-0.025(x-0)(x-50)$. Because $p=0$ and $q=50$, you know the x - intercepts are 0 and 50 . So, you can conclude that the football is kicked a distance of 50 yards.
b. To find the football's maximum height, calculate the coordinates of the vertex.

$$
\begin{aligned}
& x=\frac{p+q}{2}=\frac{0+50}{2}=25 \\
& y=20.025(25)(25-46) \approx 15.625
\end{aligned}
$$

The maximum height is the y-coordinate of the vertex, or about 15.625 yards.

Write $y=-2(x+5)(x-8)$ in standard form.

$$
\begin{aligned}
y & =-2(x+5)(x-8) \\
& =-2\left(x^{2}-8 x+5 x-40\right) \\
& =-2\left(x^{2}-3 x-40\right) \\
& =-2 x^{2}+6 x+80
\end{aligned}
$$

Write original function.
Multiply using FOIL.
Combine like terms.
Distributive property

Write $f(x)=4(x-1)^{2}+9$ in standard form.

$$
\begin{aligned}
f(x) & =4(x-1)^{2}+9 \\
& =4(x-1)(x-1)+9 \\
& =4\left(x^{2}-x-x+1\right)+9 \\
& =4\left(x^{2}-2 x+1\right)+9 \\
& =4 x^{2}-8 x+4+9 \\
& =4 x^{2}-8 x+13
\end{aligned}
$$

Write original function.
Rewrite $(x-1)^{2}$.
Multiply using FOIL.
Combine like terms.
Distributive property
Combine like terms.

GUIDED PRACTICE

Write the quadratic function in standard form.
9. $y=-(x-2)(x-7)$

$$
\begin{aligned}
y & =-(x-2)(x-7) \\
& =-\left(x^{2}-7 x-2 x+14\right) \\
& =-\left(x^{2}-9 x+14\right) \\
& =-x^{2}+9 x-14
\end{aligned}
$$

Write original function.
Multiply using FOIL.
Combine like terms.
Distributive property

GUIDED PRACTICE

10. $y=-4(x-1)(x+3)$

$$
\begin{aligned}
y & =-4(x-1)(x+3) \\
& =-4\left(x^{2}+3 x-x-3\right) \\
& =-4\left(x^{2}+2 x-3\right) \\
& =-4 x^{2}-8 x+12
\end{aligned}
$$

Write original function.
Multiply using FOIL.
Combine like terms.
Distributive property
11. $f(x)=2(x+5)(x+4)$

$$
\begin{aligned}
f(x) & =2(x+5)(x+4) \\
& =2\left(x^{2}+4 x+5 x+20\right) \\
& =2\left(x^{2}+9 x+20\right) \\
& =2 x^{2}+18 x+40
\end{aligned}
$$

Write original function.
Multiply using FOIL.
Combine like terms.
Distributive property

GUIDED PRACTICE

12. $y=-7(x-6)(x+1)$

$$
\begin{aligned}
y & =-7(x-6)(x+1) \\
& =-7\left(x^{2}+x-6 x-6\right) \\
& =-7\left(x^{2}-5 x-6\right) \\
& =-7 x^{2}+35 x+42
\end{aligned}
$$

Write original function.
Multiply using FOIL.
Combine like terms.
Distributive property

GUIDED PRACTICE

13. $y=-3(x+5)^{2}-1$

$$
\begin{aligned}
y & =-3(x+5)^{2}-1 \\
& =-3(x+5)(x+5)-1 \\
& =-3\left(x^{2}+5 x+5 x+25\right. \\
& =-3\left(x^{2}+10 x+25\right)-1 \\
& =-3 x^{2}-30 x-75-1 \\
& =-3 x^{2}-30 x-76
\end{aligned}
$$

Write original function.
Rewrite $(x+5)^{2}$.

$$
=-3\left(x^{2}+5 x+5 x+25\right)-1 \text { Multiply using FOIL. }
$$

$$
=-3\left(x^{2}+10 x+25\right)-1 \quad \text { Combine like terms. }
$$

Distributive property
Combine like terms.

GUIDED PRACTICE

14. $g(x)=6(x-4)^{2}-10$

$$
\begin{aligned}
g(x) & =6(x-4)^{2}-10 \\
& =6(x-4)(x-4)-10 \\
& =6\left(x^{2}-4 x-4 x+16\right)-10 \\
& =6\left(x^{2}-8 x+16\right)-10 \\
& =6 x^{2}-48 x+96-10 \\
& =6 x^{2}-48 x+86
\end{aligned}
$$

Write original function.
Rewrite $(x-4)^{2}$.
Multiply using FOIL.
Combine like terms.
Distributive property
Combine like terms.

GUIDED PRACTICE

15. $f(x)=-(x+2)^{2}+4$

$$
\begin{aligned}
f(x) & =-(x+2)^{2}+4 \\
& =-(x+2)(x+2)+4 \\
& =-\left(x^{2}+2 x+2 x+4\right)+4 \\
& =-\left(x^{2}+4 x+4\right)+4 \\
& =-x^{2}-4 x-4+4 \\
& =-x^{2}-4 x
\end{aligned}
$$

Write original function.
Rewrite $(x+2)^{2}$.
Multiply using FOIL.
Combine like terms.
Distributive property
Combine like terms.

GUIDED PRACTICE

16. $y=2(x-3)^{2}+9$

$$
\begin{aligned}
y & =2(x-3)^{2}+9 \\
& =2(x-3)(x-3)+9 \\
& =2\left(x^{2}-3 x-3 x+9\right)+9 \\
& =2\left(x^{2}-6 x+9\right)+9 \\
& =2 x^{2}-12 x+18+9 \\
& =2 x^{2}-12 x+27
\end{aligned}
$$

Write original function.
Rewrite $(x-3)^{2}$.
Multiply using FOIL.
Combine like terms.
Distributive property
Combine like terms.

