Factor $ax^2 + bx + c$ where c > 0

Factor $5x^2 - 17x + 6$. SOLUTION

EXAMPLE 1

You want $5x^2 - 17x + 6 = (kx + m)(lx + n)$ where *k* and *l* are factors of 5 and *m* and *n* are factors of 6. You can assume that *k* and *l* are positive and $k \ge l$. Because mn > 0, *m* and *n* have the same sign. So, *m* and *n* must both be negative because the coefficient of x, -17, is negative.

k, I	5, 1	5, 1	5, 1	5, 1
<i>m, n</i>	-6, -1	-1, -6	-3, -2	-2, -3
(kx + m)(lx + n)	(5x - 6)(x - 1)	(5x - 1)(x - 6)	(5x - 3)(x - 2)	(5x-2)(x-3)
$ax^2 + bx + c$	$5x^2 - 11x + 6$	$5x^2 - 31x + 6$	$5x^2 - 13x + 6$	$5x^2 - 17x + 6$

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

EXAMPLE 1) Factor $ax^2 + bx + c$ where c > 0

ANSWER

The correct factorization is $5x^2 - 17x + 6 = (5x - 2)(x - 3)$.

EXAMPLE 2) Factor $ax^2 + bx + c$ where c < 0

Factor $3x^2 + 20x - 7$. SOLUTION

You want $3x^2 + 20x - 7 = (kx + m)(lx + n)$ where *k* and *l* are factors of 3 and *m* and *n* are factors of -7. Because mn < 0, *m* and *n* have opposite signs.

k, I	3, 1	3, 1	3, 1	3, 1
<i>m, n</i>	7, -1	-1, 7	-7, 1	1, -7
(kx + m)(lx + n)	(3x + 7)(x - 1)	(3x-1)(x+7)	(3x - 7)(x + 1)	(3x + 1)(x - 7)
$ax^2 + bx + c$	$3x^2 + 4x - 7$	$3x^2 + 20x - 7$	$3x^2 - 4x - 7$	$3x^2 - 20x - 7$

ANSWER

The correct factorization is $3x^2 + 20x - 7 = (3x - 1)(x + 7)$.

Factor the expression. If the expression cannot be factored, say so.

for Examples 1 and 2

1. $7x^2 - 20x - 3$

GUIDED PRACTICE

SOLUTION

You want $7x^2 - 20x - 3 = (kx + m) (lx + n)$ where *k* and *l* are factors of 7 and *m* and *n* are factors of 3. You can assume that *k* and *l* are positive and $k \ge l$. Because mn < 0, m and *n* have opposite signs.

for Examples 1 and 2

k, l	7, 1	7, 1	7, 1	7, 1
<i>m</i> , <i>n</i>	3, -1	-1,3	-3, 1	1, -3
(kx+m)(lx+n)	(7x + 3)	(7x - 1)	(7x - 3)	(7x + 1)
	(x - 1)	(x + 3)	(x + 1)	(x - 3)
$ax^2 + bx + c$	$7x^2 - 4x - $	$7x^2 + 20x$	$7x^2 + 4x$	$7x^2 - 20x$
	3	- 3	- 3	- 3

ANSWER

The correct factorization is $7x^2 - 20x - 3 = (7x + 1)(x - 3)$.

for Examples 1 and 2

2. $5z^2 + 16z + 3$

SOLUTION

You want $5z^2 + 16z + 3 = (kx + m) (lx + n)$ where *k* and *l* are factors of 5 and *m* and *n* are factors of 3. You can assume that *k* and *l* are positive and $k \ge l$. Because *mn* > 0, *m* and *n* have the same sign.

for Examples 1 and 2

k, l	5, 1	5, 1	5, 1	5, 1
<i>m</i> , <i>n</i>	-3, -1	-1, -3	3, 1	1, 3
(kx+m)(lx+n)	(5z - 3)	(5z - 1)	(5z + 3)	(5z + 3)
	(z - 1)	(z - 3)	(z + 1)	(<i>z</i> + 3)
$ax^2 + bx + c$	$5z^2 - 8x +$	$5z^2 - 16x$	$5z^2 + 8z$	$5z^2 + 16z$
	3	+ 3	- 3	+ 3

ANSWER

The correct factorization is $5z^2 + 16z + 3 = (5z + 1)(z + 3)$.

3. $2w^2 + w + 3$

GUIDED PRACTICE

SOLUTION

You want $2w^2 + w + 3 = (kx + m)(lx + n)$ where *k* and *l* are factors of 2 and *m* and *n* are factors of 3. Because mn > 0, *m* and *n* have the same sign.

for Examples 1 and 2

k, l	2, 1	2, 1	2, 1	2, 1
<i>m</i> , <i>n</i>	3, 1	1, 3	-3, -1	-1, -3
(kx+m)(lx+n)	(2w + 3)	(2w + 1)	(2w-3)	(2w - 1)
	(w + 1)	(w + 3)	(w-1)	(w - 3)
$ax^2 + bx + c$	$2w^2 + 5w$	$2w^2 + 7w$	$2w^2 - 5w$	$2w^2 - $
	+ 3	+ 3	+ 3	7 <i>w</i> +3

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

for Examples 1 and 2

ANSWER

$2w^2 + w + 3$ cannot be factored

4. $3x^2 + 5x - 12$

GUIDED PRACTICE

SOLUTION

You want $3x^2 + 5x - 12 = (kx + m)(lx + n)$ where *k* and *l* are factors of 3 and *m* and *n* are factors of -12. Because mn < 0, *m* and *n* have opposite sign.

for Examples 1 and 2

k, l	3, 1	3, 1	3, 1	3, 1
<i>m</i> , <i>n</i>	12, -1	-1, 12	-3, 4	-4,3
(kx+m)(lx+n)	(3x + 12)	(3x - 1)	(3x - 3)	(3x - 4)
	(x - 1)	(x + 12)	(x + 4)	(x + 3)
$ax^2 + bx + c$	$3x^2 + 9x$	$3x^2 + 35x$	$3x^2 + 9x$	$3x^2 + 5x$
	-12	- 12	-12	-12

for Examples 1 and 2

ANSWER

The correct factorization is $3x^2 + 5x - 12 = (3x - 4)(x + 3)$.

5. $4u^2 + 12u + 5$

SOLUTION

You want $4u^2 + 12u + 5 = (kx + m)(lx + n)$ where *k* and *l* are factors of 4 and *m* and *n* are factors of 5. You can assume that *k* and *l* are positive and $k \ge l$. Because mn > 0, *m* and *n* have the same sign.

for Examples 1 and 2

k, l	2, 2	2, 2	2, 2	2, 2
<i>m</i> , <i>n</i>	-5, -1	-1, -5	1, 5	5, 1
(kx+m)(lx+n)	(2u - 5) (2u - 1)	(2u - 1) (2u - 5)	(2u + 1) (2u + 5)	(2u + 5) (2u + 1)
$ax^2 + bx + c$	$4u^2 - 12u + 5$	$4u^2 - 12u + 5$	$4u^2 + 12u + 5$	$4u^2 + 12u + 5$

ANSWER

The correct factorization is $4u^2 + 12u + 5 = (2u + 1)(2u + 5)$.

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

6. $4x^2 - 9x + 2$

SOLUTION

You want $4x^2 - 9x + 2 = (kx + m) (lx + n)$ where k and l are factors of 4 and m and n are factors of 2. You can assume that k and l are positive and $k \ge l$. Because mn > 0, m and n have the same sign. So, m and n must both be negative because the coefficient of x = -9, is negative.

for Examples 1 and 2

k, l	4, 1	4, 1	
<i>m</i> , <i>n</i>	-1, -2	-2, -1	
(kx+m)(lx+n)	(4x - 1)(x -	(4x - 2)	
	2)	(x - 1)	
$ax^2 + bx + c$	$4x^2 - 9x + 2$	$4x^2 - 6x + 2$	

ANSWER

The correct factorization is $4x^2 - 9x + 2 = (4x - 1)(x - 2)$.

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

Factor with special patterns

Factor the expression.

EXAMPLE 3

a.
$$9x^2 - 64 = (3x)^2 - 8^2$$

= $(3x + 8) (3x - 8)$

Difference of two squares

b.
$$4y^2 + 20y + 25 = (2y)^2 + 2(2y)(5) + 5^2$$

= $(2y + 5)^2$

Perfect square trinomial

c.
$$36w^2 - 12w + 1 = (6w)^2 - 2(6w)(1) + (1)^2$$
 Perfect square
= $(6w - 1)^2$ trinomial

Factor the expression.

GUIDED PRACTICE

7.
$$16x^2 - 1 = (4x)^2 - 1^2$$

= $(4x + 1) (4x - 1)$ Difference of two squares

8.
$$9y^2 + 12y + 4 = (3y)^2 + 2(3y)(2) + (2)^2$$
 Perfect square
= $(3y + 2)^2$ trinomial

for Example 3

9.
$$4r^2 - 28r + 49 = (2r)^2 - 2(2r)(7) + (7)^2$$
 Perfect square
= $(2r-7)^2$ trinomial

10.
$$25s^2 - 80s + 64 = (5s)^2 - 2(5s)(8) + (8)^2$$
 Perfect square
= $(5s - 8)^2$ trinomial

11. $49z^2 + 4z + 9 = (7z)^2 + 2(7z)(3) + (3)^2$ = $(7z + 3)^2$

for Example 3

Perfect square trinomial

12.
$$36n^2 - 9 = (3y)^2 = (6n)^2 - (3)^2$$

= $(6n - 3) (6n + 3)$

GUIDED PRACTICE

Difference of two squares

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

EXAMPLE 4 Factor out monomials first

Factor the expression.

a.
$$5x^2 - 45 = 5(x^2 - 9)$$

= $5(x + 3)(x - 3)$

b.
$$6q^2 - 14q + 8 = 2(3q^2 - 7q + 4)$$

= $2(3q - 4)(q - 1)$

c.
$$-5z^2 + 20z = 5z(z-4)$$

d.
$$12p^2 - 21p + 3 = 3(4p^2 - 7p + 1)$$

Factor the expression.

GUIDED PRACTICE

- **13.** $3s^2 24 = 3(s^2 8)$
- **14.** $8t^2 + 38t 10 = 2(4t^2 + 19t 5)$ = 2(4t - 1)(t + 5)

for Example 4

- **15.** $6x^2 + 24x + 15 = 3(2x^2 + 8x + 5)$
- **16.** $12x^2 28x 24 = 4(3x^2 7x 6)$ = 4(3x + 2)(x - 3)

17. $-16n^2 + 12n = -4n(4n-3)$

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

for Example 4

18. $6z^2 + 33z + 36 = 3(2z^2 + 11z + 2)$ = 3(2z + 3)(z + 4)

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

Solve quadratic equations

EXAMPLE 5

Solve (a)
$$3x^2 + 10x - 8 = 0$$
 and (b) $5p^2 - 16p + 15 = 4p - 5$.

a.
$$3x^2 + 10x - 8 = 0$$

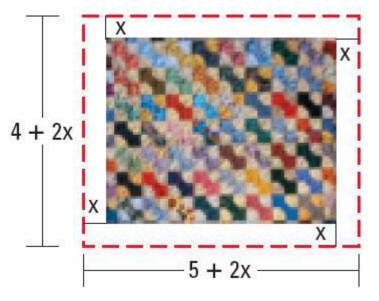
 $(3x - 2)(x + 4) = 0$
 $3x - 2 = 0$
 $x = \frac{2}{3}$ or $x + 4 = 0$
 $x = -4$
Write original equation.
Factor.
Zero product property
Solve for x.

Solve quadratic equations

(b)
$$5p^2 - 16p + 15 = 4p - 5$$
.

EXAMPLE 5

b.
$$5p^2 - 16p + 15 = 4p - 5$$
.
 $5p^2 - 20p + 20 = 0$
 $p^2 - 4p + 4 = 0$
 $(p - 2)^2 = 0$
 $p - 2 = 0$
 $p = 2$

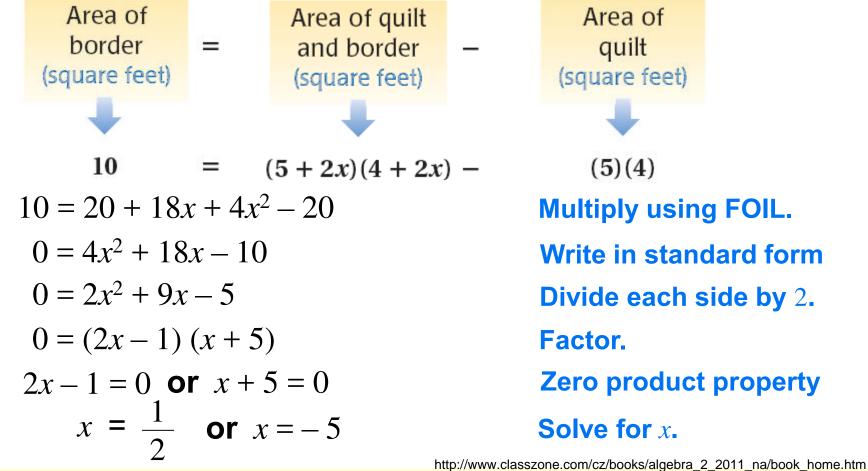

Write original equation.
Write in standard form.
Divide each side by 5.
Factor.
Zero product property
Solve for *p*.

Use a quadratic equation as a model

Quilts

EXAMPLE 6

You have made a rectangular quilt that is 5 feet by 4 feet. You want to use the remaining 10 square feet of fabric to add a decorative border of uniform width to the quilt. What should the width of the quilt's border be?



Use a quadratic equation as a model

SOLUTION

EXAMPLE 6

Write a verbal model. Then write an equation.

Use a quadratic equation as a model

ANSWER

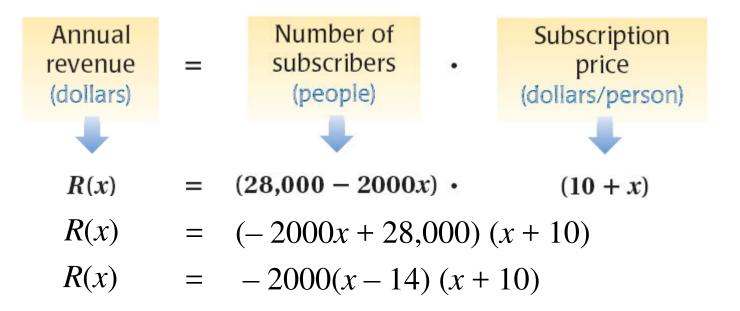
EXAMPLE 6

Reject the negative value, -5. The border's width should be $\frac{1}{2}$ ft, or 6 in.

Magazines

EXAMPLE 7

A monthly teen magazine has 28,000 subscribers when it charges \$10 per annual subscription. For each \$1 increase in price, the magazine loses about 2000 subscribers. How much should the magazine charge to maximize annual revenue ? What is the maximum annual revenue ?



SOLUTION

EXAMPLE 7

- **STEP 1** Define the variables. Let *x* represent the price increase and *R*(*x*) represent the annual revenue.
- **STEP 2** Write a verbal model. Then write and simplify a quadratic function.

EXAMPLE 7

STEP 3 Identify the zeros and find their average. Find how much each subscription should cost to maximize annual revenue.

The zeros of the revenue function are 14 and

-10. The average of the zeroes is

$$\frac{14 + (-1 \ 0)}{2} = 2.$$

EXAMPLE 7

To maximize revenue, each subscription should cost 10 + 2 = 12.

STEP 4 Find the maximum annual revenue.

R(2) = -2000(2 - 14)(2 + 10) = \$288,000

ANSWER

EXAMPLE 7

The magazine should charge \$12 per subscription to maximize annual revenue. The maximum annual revenue is \$288,000.

Solve the equation.

19.
$$6x^2 - 3x - 63 = 0$$

 $6x^2 - 3x - 63 = 0$
 $2x^2 - x - 21 = 0$
 $(2x - 7)(x + 3) = 0$

Write original equation. Divide each side by 3. Factor.

$$2x - 7 = 0$$
 or $x + 3 = 0$
 $x = \frac{7}{2} = 3\frac{1}{2}$ or $x = -3$

Solve for *x***.**

for Examples 5, 6 and 7

20.
$$12x^2 + 7x + 2 = x + 8$$

 $12x^2 + 7x + 2 = x + 8$
 $12x^2 + 6x - 6 = 0$
 $4x^2 + 2x - 2 = 0$
 $(2x + 2)(2x - 1) = 0$
 $2x + 2 = 0$ or $2x - 1 = 0$
 $x = -1$ or $x = \frac{1}{2}$
Solve for x.

7

GUIDED PRACTICE

for Examples 5, 6 and 7

21.
$$7x^2 + 70x + 175 = 0$$

 $7x^2 + 70x + 175 = 0$
 $7x^2 + 70x + 175 = 0$
 $x^2 + 70x + 175 = 0$
 $x^2 + 10x + 25 = 0$
 $(x + 5) (x - 5) = 0$
 $x + 5 = 0$ or $x - 5 = 0$
 $x + 5 = 0$ or $x - 5 = 0$
 $x = -5$ or $x = 5$
Solve for x.

22. What If ? In Example 7, suppose the magazine initially charges \$11 per annual subscription. How much should the magazine charge to maximize annual revenue ? What is the maximum annual revenue ?

SOLUTION

- **STEP 1** Define the variables. Let *x* represent the price increase and *R*(*x*) represent the annual revenue.
- **STEP 2** Write a verbal model. Then write and simplify a quadratic function.

for Examples 5, 6 and 7

- Annual Revenue = Annual Revenue Subscription price
 - R(x) = (28,000 2000x) (11 + x)
 - R(x) = (-2000x + 28000)(x + 11)

$$R(x) = -2000 (x - 14) (x + 11)$$

STEP 3 Identify the zeros and find their average. Find how much each subscription should cost to maximize annual revenue.

The zeros of the revenue function are 14 and -11. The average of the zeroes is

$$\frac{14 + (-11)}{2} = \frac{3}{2}$$

GUIDED PRACTICE

To maximize revenue, each subscription should cost $\$11 + \frac{3}{2} = \12.50 .

STEP 4 Find the maximum annual revenue.

$$R(\frac{3}{2}) = -2000(2-14)(\frac{3}{2}+11) = \$312,500$$

ANSWER

GUIDED PRACTICE

The magazine should charge \$12.50 per subscription to maximize annual revenue. The maximum annual revenue is \$312,500.