EXAMPLE 1 Solve a quadratic equation

Solve $2 x^{2}+11=-37$.

$$
\begin{aligned}
2 x^{2}+11 & =-37 & & \text { Write original equation. } \\
2 x^{2} & =-48 & & \text { Subtract } 11 \text { from each side. } \\
x^{2} & =-24 & & \text { Divide each side by } 2 . \\
x & = \pm \sqrt{-24} & & \text { Take square roots of each side. } \\
x & = \pm i \sqrt{24} & & \text { Write in terms of } i . \\
x & = \pm 2 i \sqrt{6} & & \text { Simplify radical. }
\end{aligned}
$$

ANSWER

The solutions are $2 i \sqrt{6}$ and $-2 i \sqrt{6}$.

GUIDED PRACTICE

Solve the equation.

1. $x^{2}=-13$.

$$
\begin{aligned}
x^{2} & =-13 . & & \text { Write original equation. } \\
x & = \pm \sqrt{-13} & & \text { Take square roots of each side. } \\
x & = \pm i \sqrt{13} & & \text { Write in terms of } i . \\
x & = \pm i \sqrt{13} & & \text { Simplify radical. }
\end{aligned}
$$

ANSWER

The solutions are $\mathrm{x}=i \sqrt{13}$ and $-i \sqrt{13}$.

GUIDED PRACTICE

Solve the equation.

2. $x^{2}=-38$.

$$
\begin{aligned}
x^{2} & =-38 . & & \text { Write original equation. } \\
x & = \pm \sqrt{-38} & & \text { Take square roots of each side. } \\
x & = \pm i \sqrt{38} & & \text { Write in terms of } i . \\
x & = \pm i \sqrt{38} & & \text { Simplify radical. }
\end{aligned}
$$

ANSWER

The solutions are $\mathrm{x}=i \sqrt{38}$ and $-i \sqrt{38}$.

GUIDED PRACTICE

Solve the equation.

3. $x^{2}+11=3$.

$$
x^{2}+11=3
$$

$$
x^{2}=-8
$$

$$
x= \pm \sqrt{-8}
$$

$$
x= \pm i \sqrt{8}
$$

$$
x= \pm 2 i \sqrt{2}
$$

Write original equation.
Subtract 11 from each side.
Take square roots of each side.
Write in terms of i.
Simplify radical.

ANSWER

The solutions are $2 i \sqrt{2}$ and $-2 i \sqrt{2 .}$

GUIDED PRACTICE

Solve the equation.

4. $x^{2}-8=-36$.

$$
x^{2}-8=-36 . \quad \text { Write original equation. }
$$

$$
x^{2}=-28 . \quad \text { Add } 8 \text { to each side } .
$$

$$
x= \pm \sqrt{-28} \quad \text { Take square roots of each side. }
$$

$$
x= \pm i \sqrt{28} \quad \text { Write in terms of } i \text {. }
$$

$$
x= \pm 2 i \sqrt{7} \quad \text { Simplify radical. }
$$

ANSWER

The solutions are $2 i \sqrt{7}$ and $-2 i \sqrt{7}$.

GUIDED PRACTICE

Solve the equation.

5. $3 x^{2}-7=-31$.

$$
3 x^{2}-7=-31 . \quad \text { Write original equation. }
$$

$$
\begin{aligned}
3 x^{2} & =-24 . & & \text { Add } 7 \text { to each side. } \\
x^{2} & =-8 . & & \text { Divided each side b }
\end{aligned}
$$

$$
x= \pm \sqrt{-8}
$$

$$
x= \pm i \sqrt{8} \quad \text { Write in terms of } i .
$$

$$
x= \pm 2 i \sqrt{2} \quad \text { Simplify radical. }
$$

ANSWER

The solutions are $2 i \sqrt{2}$ and $-2 i \sqrt{2 .}$

GUIDED PRACTICE

Solve the equation.

6. $5 x^{2}+33=3$.
$5 x^{2}+33=3$.

$$
\begin{aligned}
5 x^{2} & =-30 . \\
x^{2} & =-6 . \\
x & = \pm \sqrt{-6} \\
x & = \pm i \sqrt{6} \\
x & = \pm i \sqrt{6}
\end{aligned}
$$

Write original equation.
Add 7 to each side.
Divided each side by 3
Take square roots of each side.
Write in terms of i.
Simplify radical.

ANSWER

The solutions are $\dot{\sqrt{6}}$ and $-i \sqrt{6}$.

EXAMPLE 2

Write the expression as a complex number in standard form.

a. $(8-i)+(5+4 i)$
b. $(7-6 i)-(3-6 i)$
c. $10-(6+7 i)+4 i$

SOLUTION

a. $(8-i)+(5+4 i)=$

Definition of complex addition

$$
(8+5)+(-1+4) i
$$

$$
=13+3 i \quad \text { Write in standard form. }
$$

b. $(7-6 i)-(3-6 i)=$

$$
(7-3)+(-6+6) i
$$

$$
=4+0 i \quad \text { Simplify }
$$

$$
=4 \quad \text { Write in standard form. }
$$

c. $10-(6+7 i)+4 i=$

$$
[(10-6)-7 i]+4 i
$$

$$
=(4-7 i)+4 i \quad \text { Simplify }
$$

$$
=4+(-7+4) i \text { Definition of complex }
$$

addition
$=4-3 i \quad$ Write in standard form.

Write the expression as a complex number in standard form.

7. $(9-i)+(-6+7 i)$
$=(9-i)+(-6+7 i)$
$=(9-6)+(-1+7) i$
$=3+6 i$

Definition of complex addition
Write in standard form.

Write the expression as a complex number in standard form.

8. $(3+7 i)-(8-2 i)$
$=(3+7 i)-(8-2 i)$
$=(3-8)+(7+2) i$
$=-5+9 i$
Definition of complex subtraction
Write in standard form.

Write the expression as a complex number in standard form.

9. $-4-(1+i)-(5+9 i)$

$$
=-4-(1+i)-(5+9 i)
$$

$$
=[(-4-1-5)-i]-9 i
$$

$$
=(-10-i)-9 i
$$

$$
=-10+(-1-9) i
$$

$$
=-10-10 i
$$

Definition of complex subtraction

Simplify.
Definition of complex addition

Write in standard form.

Electricity

Circuit components such as resistors,inductors, and capacitors all oppose the flow of current. This opposition is called resistance for resistors and reactance for inductors and capacitors. A circuit's total opposition to current flow is impedance. All of these quantities are measured in ohms (). Ω

Component and symbol	Resistor Resistance or reactance	R	Inductor Impation
Impedance	R	L	C

The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A series circuit is also shown with the resistance or reactance of each component labeled.

The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the circuit shown above.

EXAMPLE 3 Use addition of complex numbers in real life

Component and symbol	Resistor $\mathbf{W - W -}$	Inductor 子ele-	Capacitor $-1-$
Resistance or reactance	R	L	C
Impedance	R	$L i$	$-C i$

SOLUTION

The resistor has a resistance of 5 ohms , so its impedance is 5 ohms. The inductor has a reactance of 3 ohms, so its impedance is $3 i$ ohms. The capacitor has a reactance of 4 ohms , so its impedance is $-4 i$ ohms.

Impedance of circuit

$$
\begin{aligned}
& =5+3 i+(-4 i) \\
& =5-i
\end{aligned}
$$

Add the individual impedances.

EXAMPLE 3 Pertom Opeations wilit Complex Numbers
EXAMPLE 3 Use addition of complex numbers in real life

ANSWER

The impedance of the circuit is $=5-i$ ohms.

EXAMPLE 4 Multiply complex numbers

Write the expression as a complex number in standard form.

a. $4 i(-6+i)$
b. $(9-2 i)(-4+7 i)$

SOLUTION

a. $4 i(-6+i)=-24 i+4 i^{2}$

$$
\begin{array}{ll}
=-24 i+4(-1) & \\
=-24 i-4 & \\
=-4-24 i & \\
=-4-2 i^{2}=-1 . \\
\text { Write in in standard form. }
\end{array}
$$

$$
\text { b. } \begin{aligned}
&(9-2 i)(-4+7 i) \\
&=-36+63 i+8 i-14 i^{2} \\
&=-36+71 i-14(-1) \\
&=-36+71 i+14 \\
&=-22+71 i
\end{aligned}
$$

Multiply using FOIL.

Simplify and use $i^{2}=-1$.
Simplify.
Write in standard form.

EXAMPLE 5 Divide complex numbers

Write the quotient $\frac{7+5 i}{1-4 i}$ form.

$$
\frac{7+5 i}{1-4 i}=\frac{7+5 i}{1-4 i} \cdot \frac{1+4 i}{1+4 i}
$$

Multiply numerator and denominator by $1+4 i$, the complex conjugate of $1-4 i$.

$=\frac{7+28 i+5 i+20 i^{2}}{1+4 i-4 i-16 i^{2}}$
$=\frac{7+33 i+20(-1)}{1-16(-1)}$
$=\frac{-13+33 i}{17}$

in standard

EXAMPLE 5 Divide complex numbers

$=-\frac{13}{17}+\frac{33}{17} i$

Write in standard form.

GUIDED PRACTICE

10. WHAT IF? In Example 3, what is the impedance of the circuit if the given capacitor is replaced with one having a reactance of 7 ohms?

SOLUTION

The resistor has a resistance of 5 ohms, so its impedance is 5 ohms. The inductor has a reactance of 3 ohms, so its impedance is $3 i$ ohms. The capacitor has a reactance of 7 ohms , so its impedance is -7 i ohms.

Impedance of circuit

$$
\begin{aligned}
& =5+3 i+(-7 i) \text { Add the individual impedances. } \\
& =5-4 i \quad \text { Simplify. }
\end{aligned}
$$

ANSWER

The impedance of the circuit is $=5-4 i$ ohms.

GUIDED PRACTICE

11. $i(9-i)$

SOLUTION

$$
\begin{aligned}
i(9-i) & =9 i-i^{2} \\
& =9 i+(-1)^{2} \\
& =9 i+1 \\
& =1+9 i
\end{aligned}
$$

Distributive property

Use $i^{2}=-1$.
Simplify.
Write in standard form.
12. $(3+i)(5-i)$

$$
\begin{aligned}
& =15-3 i+5 i-i^{2} \\
& =15-3 i+5 i-(1)^{2} \\
& =15-3 i+5 i+1 \\
& =16+2 i
\end{aligned}
$$

Multiply using FOIL.
Simplify and use $i^{2}=-1$.
Simplify.
Write in standard form.

GUIDED PRACTICE

13. $\frac{5}{1+i}$

$$
\frac{5}{1+i}=\frac{5}{1+i} \cdot \frac{1-i}{1-i}
$$

$$
=\frac{5-5 i}{1-i+i-i^{2}}
$$

$$
=\frac{5-5 i}{1+1}
$$

$$
=\frac{5-5 i}{2}
$$

Multiply numerator and denominator by $1-i$, the complex conjugate of $1+i$.

Multiply using FOIL.

Simplify and use $i^{2}=1$.

Simplify.

$$
=-\frac{5}{2}-\frac{5}{2} i
$$

Write in standard form.

GUIDED PRACTICE

14. $\frac{5+2 i}{3-2 i}$

$$
\frac{5+2 i}{3-2 i}=\frac{5+2 i}{3-2 i} \cdot \frac{3+2 i}{3+2 i}
$$

Multiply numerator and

 denominator $3+2 i$, the complex conjugate of $3-2 i$.$$
=\frac{15+10 i+6 i+4 i^{2}}{9+6 i-6 i-4 i^{2}}
$$

$$
=\frac{15+16 i+4(-1)}{9-4(-1)^{2}}
$$

Simplify and use $i^{2}=1$.

$$
=\frac{11+16 i}{13}
$$

Simplify.

$$
=-\frac{11}{13}+\frac{16}{13} i
$$

Write in standard form.

EXAMPLE 6 Plot complex numbers

Plot the complex numbers in the same complex plane.
a. $3-2 i$
b. $-2+4 i$
c. $3 i$
d. $2423 i$

SOLUTION

a. To plot $3-2 i$, start at the origin, move 3 units to the right, and then move 2 units down.
b. To plot $-2+4 i$, start at the origin, move 2 units to the left, and then move 4 units up.

c. To plot $3 i$, start at the origin and move 3 units up.
d. To plot $-4-3 i$, start at the origin, move 4 units to the left, and then move 3 units down.

Find the absolute value of (a) $-4+3 i$ and (b) $-3 i$.
a. $|-4+3 i|=\sqrt{(-4)^{2}+3^{2}}=\sqrt{25}=5$
b. $|-3 i|=|0+(-3 i)|=\sqrt{0^{2}+(-3)^{2}}=\sqrt{9}=3$
15. $4-i$

SOLUTION

To plot $4-i$, start at the origin, move 3 units to the right, and then move 1 units down.

$$
\begin{aligned}
& |-4+i| \\
= & \sqrt{(4)^{2}+(i)^{2}} \\
= & \sqrt{16+1} \\
= & \sqrt{17}
\end{aligned}
$$

16. $-3-4 i$

SOLUTION

To plot $-3-4 i$, start at the origin, move 3 units to the right, and then move 4 units down.

$$
\begin{aligned}
& |-3-4 i| \\
= & \sqrt{(-3)^{2}+(-4)^{2}} \\
= & \sqrt{9+16} \\
= & \sqrt{25} \\
= & 5
\end{aligned}
$$

17. $2+5 i$

SOLUTION

To plot $2+5 i$, start at the origin, move 2 units to the right, and then move 5 units down.

$$
\begin{aligned}
& |2+5 i| \\
= & \sqrt{(2)^{2}+(5)^{2}} \\
= & \sqrt{4+25} \\
= & \sqrt{29}
\end{aligned}
$$

18. $-4 i$

SOLUTION

To plot $-4 i$, start at the origin, move 4 units down.

$$
\begin{aligned}
& \mid 4 i \\
= & \sqrt{(4)^{2}} \\
= & \sqrt{16} \\
= & 4
\end{aligned}
$$

