Solve a quadratic equation

Solve
$$2x^2 + 11 = -37$$
.

EXAMPLE 1

$$2x^{2} + 11 = -37$$
$$2x^{2} = -48$$
$$x^{2} = -24$$
$$x = \pm \sqrt{-24}$$
$$x = \pm i\sqrt{-24}$$
$$x = \pm i\sqrt{-24}$$
$$x = \pm 2i\sqrt{-6}$$

Write original equation.
Subtract 11 from each side.
Divide each side by 2.
Take square roots of each side.
Write in terms of *i*.
Simplify radical.

ANSWER

The solutions are $2i\sqrt{6}$ and $-2i\sqrt{6}$.

GUIDED PRACTICE

1.
$$x^2 = -13$$
.

- $x^2 = -13.$
- $x = \pm \sqrt{-13}$
- $x = \pm i \sqrt{13}$
- $x = \pm i \sqrt{13}$

- Write original equation.
- Take square roots of each side.
 - Write in terms of *i*.
- Simplify radical.

for Example 1

ANSWER

The solutions are $x = i\sqrt{13}$ and $-i\sqrt{13}$.

 $x = +\sqrt{-38}$

 $x = +i\sqrt{38}$

 $x = \pm i\sqrt{38}$

2.
$$x^2 = -38$$
.
 $x^2 = -38$.

GUIDED PRACTICE

Write original equation.

- Take square roots of each side.
 - Write in terms of *i*.

Simplify radical.

for Example 1

ANSWER

The solutions are $x = i\sqrt{38}$ and $-i\sqrt{38}$.

3. $x^2 + 11 = 3$.

GUIDED PRACTICE

- $x^2 + 11 = 3$.
 - $x^2 = -8.$
 - $x = \pm \sqrt{-8}$ $x = \pm i \sqrt{8}$
 - $x = \pm i \vee 8$
 - $x = \pm 2i\sqrt{2}$

- Write original equation.
- Subtract 11 from each side.
- Take square roots of each side.
- Write in terms of *i*.
- Simplify radical.

for Example 1

ANSWER

The solutions are $2i\sqrt{2}$ and $-2i\sqrt{2}$.

GUIDED PRACTICE

4. $x^2 - 8 = -36$. $x^2 - 8 = -36$. $x^2 = -28$. $x = \pm \sqrt{-28}$ $x = \pm i\sqrt{-28}$ $x = \pm i\sqrt{28}$ $x = \pm 2i\sqrt{7}$ Write in terms of *i*. Simplify radical.

for Example 1

ANSWER

The solutions are $2i\sqrt{7}$ and $-2i\sqrt{7}$.

GUIDED PRACTICE

- 5. $3x^2 7 = -31$.
- $3x^2 7 = -31$.
 - $3x^2 = -24$.
 - $x^2 = -8.$
 - $x = \pm \sqrt{-8}$
 - $x = \pm i \sqrt{8}$

 $x = +2i \vee 2$

- Write original equation.
- Add 7 to each side.

for Example 1

- **Divided each side by** 3
- Take square roots of each side.
- Write in terms of *i*.
- Simplify radical.

ANSWER

The solutions are $2i\sqrt{2}$ and $-2i\sqrt{2}$.

GUIDED PRACTICE

- 6. $5x^2 + 33 = 3$.
- $5x^2 + 33 = 3$.
 - $5x^2 = -30$.
 - $x^2 = -6.$
 - $x = \pm \sqrt{-6}$
 - $x = \pm i \sqrt{6}$

 $x = +i\sqrt{6}$

- Write original equation.
- Add 7 to each side.

for Example 1

- **Divided each side by** 3
- Take square roots of each side.
- Write in terms of *i*.
- Simplify radical.

ANSWER

The solutions are $i\sqrt{6}$ and $-i\sqrt{6}$.

Add and subtract complex numbers

Write the expression as a complex number in standard form.

a. (8-i) + (5+4i) **b**. (7-6i) - (3-6i) **c**. 10 - (6+7i) + 4i

SOLUTION

EXAMPLE 2

a. (8 - i) + (5 + 4i) = (8 + 5) + (-1 + 4)i = 13 + 3i **b**. (7 - 6i) - (3 - 6i) = (7 - 3) + (-6 + 6)i = 4 + 0i= 4

Definition of complex addition

Write in standard form. Definition of complex subtraction Simplify.

Write in standard form.

Perform Operations with Complex Numbers

Add and subtract complex numbers

c.
$$10 - (6 + 7i) + 4i =$$

 $[(10 - 6) - 7i] + 4i$
 $= (4 - 7i) + 4i$ Simplify.
 $= 4 + (-7 + 4)i$ Definition of complex addition

EXAMPLE 2

= 4 - 3i Write in standard form.

Write the expression as a complex number in standard form.

for Example 2

7.
$$(9 - i) + (-6 + 7i)$$

GUIDED PRACTICE

$$= (9 - i) + (-6 + 7i)$$

= (9 - 6) + (-1 + 7)i
= 3 + 6i

Definition of complex addition Write in standard form.

Write the expression as a complex number in standard form.

for Example 2

8.
$$(3 + 7i) - (8 - 2i)$$

GUIDED PRACTICE

$$=(3+7i)-(8-2i)$$

$$= (3-8) + (7+2)i$$

= -5 + 9i

Definition of complex subtraction Write in standard form.

Write the expression as a complex number in standard form.

for Example 2

GUIDED PRACTICE

$$9. -4 - (1 + i) - (5 + 9i)$$

$$= -4 - (1 + i) - (5 + 9i)$$

$$= [(-4 - 1 - 5) - i] - 9i$$
Definition of complex subtraction
$$= (-10 - i) - 9i$$
Simplify.
$$= -10 + (-1 - 9)i$$
Definition of complex addition
$$= -10 - 10i$$
Write in standard form

Electricity

EXAMPLE 3

Circuit components such as resistors, inductors, and capacitors all oppose the flow of current. This opposition is called *resistance* for resistors and *reactance* for inductors and capacitors. A circuit's total opposition to current flow is *impedance*. All of these quantities are measured in ohms (). Ω

Component and symbol	Resistor —••••	Inductor	Capacitor	5Ω
Resistance or reactance	R	L	с	
Impedance	R	Li	–Ci	Alternating current source

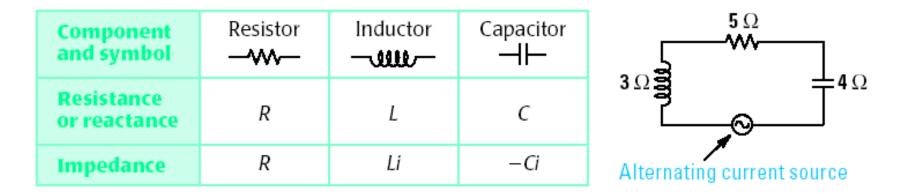
Use addition of complex numbers in real life

The table shows the relationship between a component's resistance or reactance and its contribution to impedance. A *series circuit* is also shown with the resistance or reactance of each component labeled.

EXAMPLE 3

The impedance for a series circuit is the sum of the impedances for the individual components. Find the impedance of the circuit shown above.

Perform Operations with Complex Numbers Use addition of complex numbers in real life



SOLUTION

EXAMPLE 3

The resistor has a resistance of 5 *ohms*, so its impedance is 5 *ohms*. The inductor has a reactance of 3 *ohms*, so its impedance is 3i *ohms*. The capacitor has a reactance of 4 *ohms*, so its impedance is -4i *ohms*.

Impedance of circuit

$$= 5 + 3i + (-4i)$$

= 5 - *i*

Add the individual impedances.

Use addition of complex numbers in real life

ANSWER

EXAMPLE 3

The impedance of the circuit is = 5 - i ohms.

EXAMPLE 4 Multiply complex numbers

Write the expression as a complex number in standard form.

a. 4i(-6+i) **b**. (9-2i)(-4+7i)

SOLUTION

a.
$$4i(-6+i) = -24i + 4i^2$$

= $-24i + 4(-1)$
= $-24i - 4$
= $-4 - 24i$

Distributive property

Use $i^2 = -1$.

Simplify. Write in standard form.

Multiply complex numbers

b.
$$(9 - 2i)(-4 + 7i)$$

= $-36 + 63i + 8i - 14i^2$
= $-36 + 71i - 14(-1)$
= $-36 + 71i + 14$
= $-22 + 71i$

EXAMPLE 4)

Multiply using FOIL. Simplify and use $i^2 = -1$. Simplify. Write in standard form.

Divide complex numbers

Write the quotient $\frac{7+5i}{1-4i}$ in standard form.

EXAMPLE 5

$$\frac{7+5i}{1-4i} = \frac{7+5i}{1-4i} \cdot \frac{1+4i}{1+4i}$$

Multiply numerator and denominator by 1 + 4i, the complex conjugate of 1 - 4i.

$$=\frac{7+28i+5i+20i^2}{1+4i-4i-16i^2}$$

Multiply using FOIL.

 $=\frac{7+33i+20(-1)}{1-16(-1)}$

Simplify and use $i^2 = 1$.

$$=\frac{-13+33i}{17}$$

Simplify.

$$=-\frac{13}{17}+\frac{33}{17}i$$

Write in standard form.

10. WHAT IF? In Example 3, what is the impedance of the circuit if the given capacitor is replaced with one having a reactance of 7 ohms?

SOLUTION

GUIDED PRACTICE

The resistor has a resistance of 5 *ohms*, so its impedance is 5 *ohms*. The inductor has a reactance of 3 *ohms*, so its impedance is 3i *ohms*. The capacitor has a reactance of 7 *ohms*, so its impedance is -7i *ohms*.

Impedance of circuit

= 5 + 3i + (-7i) Add the individual impedances.

= 5 - 4 i Simplify.

ANSWER

The impedance of the circuit is = 5 - 4i ohms.

for Examples 3, 4 and 5

11. i(9-i)

SOLUTION

$$i(9 - i) = 9i - i^{2}$$

= 9i + (-1)²
= 9i + 1
= 1 + 9i

Distributive property Use $i^2 = -1$. Simplify. Write in standard form.

for Examples 3, 4 and 5

12.
$$(3 + i) (5 - i)$$

$$= 15 - 3i + 5i - i^{2}$$

= 15 - 3i + 5i - (1)²
= 15 - 3i + 5i + 1
= 16 + 2i

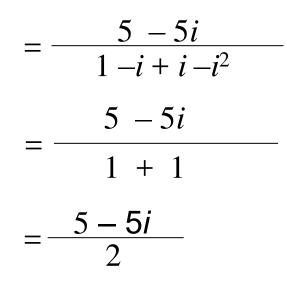
Multiply using FOIL. Simplify and use $i^2 = -1$. Simplify. Write in standard form.

for Examples 3, 4 and 5

13.
$$\frac{5}{1+i}$$

$$\frac{5}{1+i} = \frac{5}{1+i} \cdot \frac{1-i}{1-i}$$

Multiply numerator and denominator by 1 - i, the complex conjugate of 1 + i.



Multiply using FOIL.

Simplify and use $i^2 = 1$.

Simplify.

for Examples 3, 4 and 5

$$=-\frac{5}{2}-\frac{5}{2}i$$

Write in standard form.

for Examples 3, 4 and 5

14.
$$\frac{5+2i}{3-2i}$$

$$\frac{5+2i}{3-2i} = \frac{5+2i}{3-2i} \cdot \frac{3+2i}{3+2i}$$

Multiply numerator and denominator 3 + 2i, the complex conjugate of 3 - 2i.

$$=\frac{15+10i+6i+4i^2}{9+6i-6i-4i^2}$$

 $=\frac{15+16i+4(-1)}{9-4(-1)^2}$

Multiply using FOIL.

Simplify and use $i^2 = 1$.

$$=\frac{11 + 16i}{13}$$

Simplify.

for Examples 3, 4 and 5

$$= -\frac{11}{13} + \frac{16}{13}i$$

Write in standard form.

Plot complex numbers

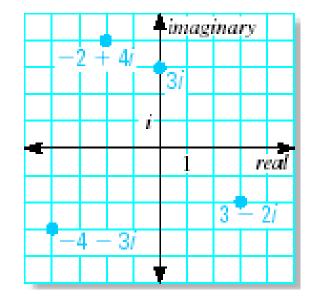
Plot the complex numbers in the same complex plane.

a. 3-2i **b**. -2+4i **c**. 3i

SOLUTION

EXAMPLE 6

- a. To plot 3 2*i*, start at the origin, move 3 units to the right, and then move 2 units down.
- **b.** To plot -2 + 4i, start at the origin, move 2 units to the left, and then move 4 units up.



d. 24 2 3*i*

- c. To plot 3*i*, start at the origin and move 3 units up.
- d. To plot -4-3i, start at the origin, move 4 units to the left, and then move 3 units down.

Find absolute values of complex numbers

Find the absolute value of (a) -4 + 3i and (b) -3i. a. $|-4 + 3i| = \sqrt{(-4)^2 + 3^2} = \sqrt{25} = 5$

b.
$$|-3i| = |0 + (-3i)| = \sqrt{0^2 + (-3)^2} = \sqrt{9} = 3$$

EXAMPLE 7

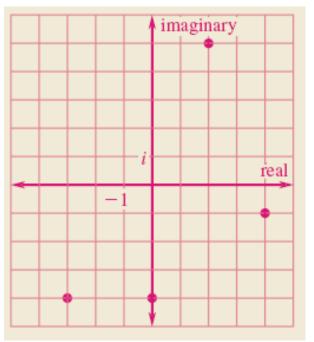
15. 4 - i

GUIDED PRACTICE

SOLUTION

To plot 4 - i, start at the origin, move 3 units to the right, and then move 1 units down.

$$\begin{vmatrix} -4+i \end{vmatrix}$$
$$= \sqrt{(4)^2 + (i)^2}$$
$$= \sqrt{16+1}$$
$$= \sqrt{17}$$



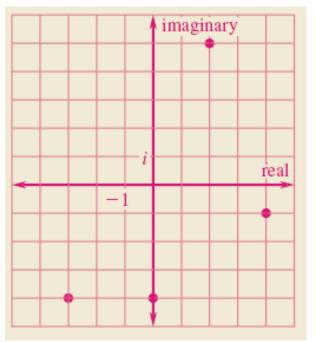
16. -3-4i

GUIDED PRACTICE

SOLUTION

To plot -3 - 4i, start at the origin, move 3 units to the right, and then move 4 units down.

$$\begin{vmatrix} -3 - 4 i \end{vmatrix}$$
$$= \sqrt{(-3)^2 + (-4)^2}$$
$$= \sqrt{9 + 16}$$
$$= \sqrt{25}$$
$$= 5$$



17. 2 + 5i

GUIDED PRACTICE

SOLUTION

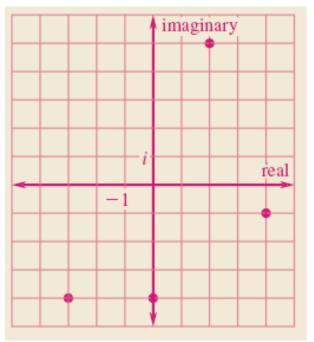
To plot 2 + 5i, start at the origin, move 2 units to the right, and then move 5 units down.

$$|2+5i|$$

$$= \sqrt{(2)^2 + (5)^2}$$

$$= \sqrt{4+25}$$

$$= \sqrt{29}$$



18. – 4*i*

SOLUTION

To plot -4i, start at the origin, move 4 units down.

$$\begin{vmatrix} 4 i \\ = \sqrt{(4)^2} \\ = \sqrt{16} \\ = 4$$

