EXAMPLE 1) Solve a quadratic equation by finding square roots

Solve
$$x^2 - 8x + 16 = 25$$
. $x^2 - 8x + 16 = 25$ Write original equation. $(x - 4)^2 = 25$ Write left side as a binomial squared. $x - 4 = \pm 5$ Take square roots of each side. $x = 4 \pm 5$ Solve for x.

ANSWER

The solutions are 4 + 5 = 9 **and** 4 - 5 = -1**.**

Complete the Square

8

8x

64

Х

 x^2

X

EXAMPLE 2 Make a perfect square trinomial

Find the value of *c* that makes $x^2 + 16x + c$ a perfect square trinomial. Then write the expression as the square of a binomial.

STEP 1 Find half the coefficient of *x*. $\frac{16}{2} = 8$ **STEP 2**

SOLUTION

Replace *c* with the result of Step 2. $x^2 + 16x + 64$

EXAMPLE 2 Make a perfect square trinomial

ANSWER

The trinomial $x^2 + 16x + c$ is a perfect square when c = 64. Then $x^2 + 16x + 64 = (x + 8)(x + 8) = (x + 8)^2$.

Solve the equation by finding square roots.

1. $x^2 + 6x + 9 = 36$.	
$x^2 + 6x + 9 = 36$	Write original equation.
$(x + 3)^2 = 36$	Write left side as a binomial squared.
$x + 3 = \underline{+6}$	Take square roots of each side.
<i>x</i> = – 3 <u>+</u> 6	Solve for <i>x</i> .

for Examples 1 and 2

ANSWER

GUIDED PRACTICE

The solutions are -3 + 6 = 3 **and** -3 - 6 = -9**.**

Complete the Square

е.

GUIDED PRACTICE

for Examples 1 and 2

2.
$$x^2 - 10x + 25 = 1$$
.
 $x^2 - 10x + 25 = 1$
 $(x - 5)^2 = 1$
 $x - 5 = \pm 1$
 $x - 5 = \pm 1$
 $x = 5 \pm 1$
Write original equation.
Write left side as a binomial squared.
Take square roots of each sid
Solve for x.

ANSWER

2.

The solutions are 5 - 1 = 4 and 5 + 1 = 6.

GUIDED PRACTICE for Example

3.
$$x^2 - 24x + 144 = 100$$
.
 $x^2 - 24x + 144 = 100$
 $(x - 12)^2 = 100$

Write original equation. Write left side as a binomial squared.

$$x - 12 = \pm 10$$

 $x = 12 \pm 10$

Take square roots of each side. Solve for *x*.

ANSWER

The solutions are 12 - 10 = 2 and 12 + 10 = 22.

for Examples 1 and 2

4.
$$x^2 + 14x + c$$

GUIDED PRACTICE

Find the value of *c* that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial. x = 7

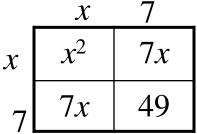
SOLUTION

STEP 1 Find half the coefficient of *x*. $\frac{14}{2} = 7$ **STEP 2**

Square the result of Step 1. $7^2 = 49$

STEP 3

Replace *c* with the result of Step 2. $x^2 + 14x + 49$



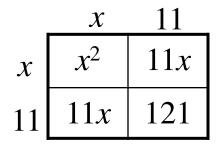
ANSWER

The trinomial $x^2 + 14x + c$ is a perfect square when c = 49.

Then $x^2 + 14x + 49 = (x + 7)(x + 7) = (x + 7)^2$.

GUIDED PRACTICE for Examples 1 and 2

5.
$$x^2 + 22x + c$$



SOLUTION

STEP 1

Find half the coefficient of *x*. $\frac{22}{2} = 22$ STEP 2

Square the result of Step 1. $11^2 = 121$

STEP 3

Replace *c* with the result of Step 2. $x^2 + 22x + 121$

ANSWER

The trinomial $x^2 + 22x + c$ is a perfect square when c = 144.

Then $x^2 + 22x + 144 = (x + 11)(x + 11) = (x + 11)^2$.

Complete the Square

6. $x^2 - 9x + c$

GUIDED PRACTICE

SOLUTION

STEP 1

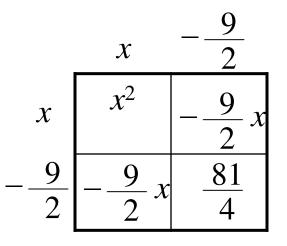
Find half the coefficient of $x - \frac{9}{2} = \frac{-9}{2}$ STEP 2

Square the result of Step 1. $\left(\frac{-9}{2}\right) = \frac{81}{4}$

STEP 3

Replace *c* with the result of Step 2. $x^2 - 9x + \frac{81}{4}$

for Examples 1 and 2



ANSWER

The trinomial $x^2 - 9x + c$ is a perfect square when $c = \frac{81}{4}$. Then $x^2 - 9x + \frac{81}{4} = (x - \frac{9}{2})(x - \frac{9}{2}) = (x - \frac{9}{2})^2$.

Solve $ax^2 + bx + c = 0$ when a = 1

Solve $x^2 - 12x + 4 = 0$ by completing the square. $x^2 - 12x + 4 = 0$ Write original equation. $x^2 - 12x = -4$ Write left side in the form $x^2 + bx$. Add $\left(\frac{-12}{2}\right)^2 = (-6)^2 = 36$ to each side. $x^2 - 12x + 36 = -4 + 36$ $(x-6)^2 = 32$ Write left side as a binomial squared. $x - 6 = +\sqrt{32}$ Take square roots of each side. $x = 6 \pm \sqrt{32}$ Solve for *x*. $x = 6 + 4\sqrt{2}$ **Simplify:** $\sqrt{32} = \sqrt{16}, \sqrt{2} = 4\sqrt{2}$

ANSWER

EXAMPLE 3

The solutions are $6 + 4\sqrt{2}$ and $6 - 4\sqrt{2}$

EXAMPLE 3

CHECK

You can use algebra or a graph.

Algebra Substitute each solution in the original equation to verify that it is correct.

Graph Use a graphing calculator to graph

 $y = x^2 - 12x + 4$. The *x*-intercepts are about $0.34 \approx 6 - 4\sqrt{2}$ and $11.66 \approx 6 + 4\sqrt{2}$

Solve $ax^2 + bx + c = 0$ when a = 1

Solve $2x^2 + 8x + 14 = 0$ by completing the square.

$$2x^{2} + 8x + 14 = 0$$

$$x^{2} + 4x + 7 = 0$$

$$x^{2} + 4x = -7$$

$$x^{2} - 4x + 4 = -7 + 4$$

$$(x + 2)^{2} = -3$$

$$x + 2 = \pm \sqrt{-3}$$

$$x = -2 \pm \sqrt{-3}$$

$$x = -2 \pm \sqrt{-3}$$

EXAMPLE 4

Write original equation.

Divide each side by the coefficient of x^2 . Write left side in the form $x^2 + bx$. Add $\left(\frac{4}{2}\right)^2 = 2^2 = 4$ to each side.

Write left side as a binomial squared.

Take square roots of each side.

Solve for *x*.

Write in terms of the imaginary unit *i*.

Solve $ax^2 + bx + c = 0$ when a = 1

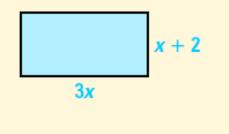
ANSWER

The solutions are $-2 + i\sqrt{3}$ and $-2 - i\sqrt{3}$.

Standardized Test Practice

The area of the rectangle shown is 72 square units. What is the value of *x*?

▲ -6
▲ 4
▲ 8.48
▲ -6 or 4



SOLUTION

EXAMPLE 5

Use the formula for the area of a rectangle to write an equation.

Standardized Test Practice

3x(x+2) = 72 $3x^2 + 6x = 72$

 $x^2 + 2x = 24$

- Length X Width = Area
- **Distributive property**
 - **Divide each side by the coefficient of** *x*².

$$x^2 - 2x + 1 = 24 + 1$$

$$(x+1)^2 = 25$$

Add $\left(\frac{2}{2}\right)^2 = 1^2 = 1$ to each side. Write left side as a binomial

$$x + 1 = +5$$

- squared.
- Take square roots of each side.
- $x = -1 \pm 5$ Solve for *x*.

Standardized Test Practice

So, x = -1 + 5 = 4 or x = -1 - 5 = -6. You can reject x = -6 because the side lengths would be -18 and -4, and side lengths cannot be negative.

ANSWER

EXAMPLE 5

The value of x is 4. The correct answer is $B. \bigcirc \mathbb{B} \odot \mathbb{O}$

7. Solve $x^2 + 6x + 4 = 0$ by completing the square.

$$x^2 + 6x + 4 = 0$$
Write original equation. $x^2 + 6x = -4$ Write left side in the form $x^2 + bx$. $x^2 + 6x + 9 = -4 + 9$ Add $\left(\frac{6}{2}\right)^2 = (3)^2 = 9$ to each side. $(x + 3)^2 = 5$ Write left side as a binomial squared. $x + 3 = \pm \sqrt{5}$ Take square roots of each side. $x = -3 \pm \sqrt{5}$ Solve for x.

GUIDED PRACTICE

The solutions are $-3+\sqrt{2}$ and $-3-\sqrt{5}$

8. Solve $x^2 - 10x + 8 = 0$ by completing the square. $x^2 - 10x + 8 = 0$ Write original equation. $x^2 - 10x = -8$ Write left side in the form $x^2 + bx$. $x^2 - 10x + 25 = -8 + 25$ Add $\left(\frac{10}{2}\right)^2 = (5)^2 = 25$ to each side. $(x-5)^2 = 17$ Write left side as a binomial squared. $x - 5 = +\sqrt{17}$ Take square roots of each side. $x = 5 + \sqrt{17}$ Solve for *x*.

ANSWER

GUIDED PRACTICE

The solutions are $5 + \sqrt{17}$ and $5 - \sqrt{17}$

9. Solve $2n^2 - 4n - 14 = 0$ by completing the square.

$$2n^{2} - 4n - 14 = 0$$

$$2n^{2} - 4n = 14$$

$$n^{2} - 2n = 7$$

$$n^{2} - 2n + 1 = 7 + 1$$

$$(n - 1)^{2} = 8$$

$$n - 1 = \pm \sqrt{8}$$

GUIDED PRACTICE

Write original equation.

Write left side in the form $x^2 + bx$. Divided each side by 2.

Add $\left(\frac{2}{1}\right)^2 = (1)^2 = 1$ to each side.

Write left side as a binomial squared.

Take square roots of each side.

 $n = 1 \pm 2\sqrt{2}$ Solve for *n*.

ANSWER

The solutions are $1 + 2\sqrt{2}$ and $1 - 2\sqrt{2}$

10.Solve $3x^2 + 12n - 18 = 0$ by completing the square. $3x^2 + 12n - 18 = 0$ Write original equation

 $x^2 + 4n - 6 = 0$ Write original equation. $x^2 + 4n - 6 = 0$ Divided each side by the coefficient of x^2 .

$$x^2 + 4n = 6$$

GUIDED PRACTICE

$$x^{2} + 4x + 4 = 6 + 4$$
$$(x + 2)^{2} = 10$$

 $x + 2 = +\sqrt{10}$

Write left side in the form $x^2 + bx$.

Add
$$\left(\frac{4}{2}\right)^2 = (2)^2 = 4$$
 to each side.

Write left side as a binomial squared.

Take square roots of each side.

 $x = -2 \pm \sqrt{10}$ Solve for *x*.

ANSWER

The solutions are $-2 + \sqrt{10}$ and $-2 - \sqrt{10}$

11. 6x(x+8) = 12

GUIDED PRACTICE

6x(x + 8) = 12 $6x^{2} + 48x = 12$ $x^{2} + 8x = 2$

$$x^2 + 8x + 16 = 2 + 16$$

 $(x+4)^2 = 18$

$$x + 4 = \pm 3\sqrt{2}$$
$$x = -4 + 3\sqrt{2}$$

Write original equationDistributive propertyDivide each side by thecoefficient of x^2 .

Add $\left(\frac{8}{2}\right)^2 = 4^2 = 16$ to each side.

Write left side as a binomial squared.

Take square roots of each side.

Solve for *x*.

ANSWER

The solutions are $-4 + 3\sqrt{2}$ and $-4 - 3\sqrt{2}$

11.
$$4p(p-2) = 100$$

GUIDED PRACTICE

$$4p(p-2) = 100$$

$$4p^{2} - 8p = 100$$

$$p^{2} - 2p = 25$$

$$p^{2} - 2x + 1 = 25 + 1$$

$$(p-1)^{2} = 26$$

$$p - 1 = \sqrt{26}$$

$$p = 1 \pm \sqrt{26}$$

Write original equation Distributive property Divide each side by the coefficient of p^2 .

Add
$$\left(\frac{8}{2}\right)^2 = 4^2 = 16$$
 to each side.

Write left side as a binomial squared.

Take square roots of each side.

Solve for *x*.

ANSWER

The solutions are $1 + \sqrt{26}$ and $1 - \sqrt{26}$

Write a quadratic function in vertex form

Solve for y.

Write $y = x^2 - 10x + 22$ in vertex form. Then identify the vertex.

 $y = x^{2} - 10x + 22$ $y + ? = (x^{2} - 10x + ?) + 22$ $y + 25 = (x^{2} - 10x + 25) + 22$ $y + 25 = (x - 5)^{2} + 22$

$$y = (x - 5)^2 - 3$$

Write original function.

Prepare to complete the square. Add $\left(\frac{-10}{2}\right)^2 = (-5)^2 = 25$ to each side. Write $x^2 - 10x + 25$ as a binomial squared.

ANSWER

EXAMPLE 6

The vertex form of the function is $y = (x - 5)^2 - 3$. The vertex is (5, -3).

Find the maximum value of a quadratic function

Baseball

EXAMPLE 7

The height *y* (in feet) of a baseball *t* seconds after it is hit is given by this function:

 $y = -16t^2 + 96t + 3$

Find the maximum height of the baseball.

SOLUTION

The maximum height of the baseball is the y-coordinate of the vertex of the parabola with the given equation.

Find the maximum value of a quadratic function

 $y = -16t^{2} + 96t + 3$ Write $y = -16(t^{2} - 6t) + 3$ Fact $y + (-16)(?) = -16(t^{2} - 6t + ?) + 3$ Prep $y + (-16)(9) = -16(t^{2} - 6t + 9) + 3$ Add $y - 144 = -16(t - 3)^{2} + 3$ Write bino

Write original function.

Factor –16 **from first two terms.**

Prepare to complete the square.

Add (-16)(9) to each side.

Write $t^2 - 6t + 9$ as a binomial squared.

 $y = -16(t-3)^2 + 147$ Solve for y.

ANSWER

EXAMPLE 7

The vertex is (3, 147), so the maximum height of the baseball is 147 feet.

GUIDED PRACTICE for Examples 6 and 7

13. Write $y = x^2 - 8x + 17$ in vertex form. Then identify the vertex.

 $y = x^2 - 8x + 17$ Write original function. $y + ? = (x^2 - 8x + ?) + 17$ Prepare to complete the square. $y + 16 = (x^2 - 8x + 16) + 17$ Add $\left(\frac{-8}{2}\right)^2 = (-4)^2 = 16$ to each side. $y + 16 = (x - 4)^2 + 17$ Write $x^2 - 8x + 16$ as a binomial squared. $y = (x - 4)^2 + 1$ Solve for y.

ANSWER

The vertex form of the function is $y = (x - 4)^2 + 1$. The vertex is (4, 1).

Solve for y.

14. Write $y = x^2 + 6x + 3$ in vertex form. Then identify the vertex.

> $y = x^2 + 6x + 3$ $y + ? = (x^2 + 6x + ?) + 3$ $y + 9 = (x + 3)^2 + 3$ $y = (x + 3)^2 - 6$

Write original function.

Prepare to complete the square. $y + 9 = (x^2 + 6x + 9) + 3$ Add $\left(\frac{6}{2}\right)^2 = (3)^2 = 9$ to each side. Write $x^2 + 6x + 9$ as a binomial squared.

ANSWER

The vertex form of the function is $y = (x + 3)^2 - 6$. The vertex is (-3, -6).

Solve for y.

15. Write $f(x) = x^2 - 4x - 4$ in vertex form. Then identify the vertex.

$$f(x) = x^{2} - 4x - 4$$

$$y + ? = (x^{2} - 4x + ?) - 4$$

$$y + 4 = (x^{2} - 4x + 4) - 4$$

$$y + 4 = (x - 2)^{2} - 4$$

$$y = (x - 2)^{2} - 8$$

Write original function.

Prepare to complete the square. Add $\left(\frac{-4}{2}\right)^2 = (-2^2) = 4$ to each side. Write $x^2 - 4x + 4$ as a binomial squared.

ANSWER

The vertex form of the function is $y = (x - 2)^2 - 8$. The vertex is (2, -8).

16. What if ? In example 7, suppose the height of the baseball is given by $y = -16t^2 + 80t + 2$. Find the maximum height of the baseball.

SOLUTION

The maximum height of the baseball is the y-coordinate of the vertex of the parabola with the given equation.

 $y = -16t^2 + 80t + 2$ Write original function.

 $y = -4((2t)^2 - 20t) + 2$ Factor – 4 from first two terms.

 $y + (-4)(?) = -4((2t)^2 - 20t + ?) + 2$ Prepare to complete the square.

GUIDED PRACTICE for Examples 6 and 7

$$y + (-4)(25) = -4((2t)^2 - 20t + 25) + 2 \operatorname{Add}(-4)(25)$$
 to each side.

$$y - 100 = -4(2t - 5)^2 + 2$$

Write $2t^2 - 20 + 25$ as a binomial squared.

 $y = -4(2t - 5)^2 + 102$

Solve for *y*.

ANSWER

The vertex is (5, 102), so the maximum height of the baseball is 102 feet.