

Solve an equation with two real solutions

Solve
$$x^{2} + 3x = 2$$
.
 $x^{2} + 3x = 2$
 $x^{2} + 3x - 2 = 0$
 $x = -b \pm \sqrt{b^{2} - 4ac}$
 $x = -3 \pm \sqrt{3^{2} - 4(1)(-2)}$
 $2(1)$

Write original equation. Write in standard form. Quadratic formula

$$a = 1, b = 3, c = -2$$

$$x = \frac{-3 \pm \sqrt{17}}{2}$$

Simplify.

ANSWER

The solutions are $x = -3 + \sqrt{17} \approx 0.56$ and $x = -3 - \sqrt{17} \approx -3.56$.

Use the Quadratic Formula and Discriminant Solve an equation with two real solutions

CHECK

EXAMPLE 1

Graph $y = x^2 + 3x - 2$ and note that the *x*-intercepts are about 0.56 and about -3.56.

Solve an equation with one real solutions

Solve
$$25x^2 - 18x = 12x - 9$$
.
 $25x^2 - 18x = 12x - 9$.
 $25x^2 - 30x + 9 = 0$.
 $x = \frac{30 \pm \sqrt{(-30)^2 - 4(25)(9)}}{2(25)}$
 $x = \frac{30 \pm \sqrt{0}}{2(25)}$
Simplify.
 $x = \frac{30 \pm \sqrt{0}}{50}$
 $x = \frac{3}{5}$
Simplify.
ANSWER
The solution is $\frac{3}{5}$

Solve an equation with one real solutions

CHECK

Graph $y = -5x^2 - 30x + 9$ and note that the only *x*-intercept is $0.6 = \frac{3}{5}$.

Use the Quadratic Formula and Discriminant Solve an equation with imaginary solutions

Solve
$$-x^{2} + 4x = 5$$
.
 $-x^{2} + 4x = 5$
 $-x^{2} + 4x - 5 = 0$.
 $x = -4 \pm \sqrt{-4^{2} - 4(-1)(-5)}$
 $2(-1)$
 $x = \frac{-4 \pm \sqrt{-4}}{-2}$
 $x = \frac{-4 \pm \sqrt{-4}}{-2}$
 $x = \frac{-4 \pm 2i}{-2}$
 $x = 2 \pm i$

Write original equation.

Write in standard form.

a = -1, b = 4, c = -5

Simplify.

Rewrite using the imaginary unit *i*. Simplify.

ANSWER

The solution is 2 + i and 2 - i.

Use the Quadratic Formula and Discriminant Solve an equation with imaginary solutions

CHECK

Graph $y = 2x^2 + 4x - 5$. There are no *x*-intercepts. So, the original equation has no real solutions. The algebraic check for the imaginary solution 2 + i is shown.

$$-(2 + i)^{2} + 4(2 + i) \stackrel{?}{=} 5$$
$$-3 - 4i + 8 + 4i \stackrel{?}{=} 5$$
$$5 = 5$$

Use the quadratic formula to solve the equation.

1.
$$x^2 = 6x - 4$$

GUIDED PRACTICE

SOLUTION

$$x^2 = 6x - 4$$

 $x^2 - 6x + 4 = 0$

Write original equation.

Use the Quadratic Formula and Discriminant

Write in standard form.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Quadratic formula
$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)} a = 1, b = -6, c = 4$$

for Examples 1, 2, and 3

$$x = \frac{+3 \pm \sqrt{20}}{2}$$

Simplify.

ANSWER

GUIDED PRACTICE

The solutions are $x = \frac{3 + \sqrt{20}}{2} = 3 + \sqrt{5}$ and $x = \frac{3 - \sqrt{20}}{2} = 3 - \sqrt{5}$

Use the quadratic formula to solve the equation.

$$4x^2 - 10x = 2x - 9$$

GUIDED PRACTICE

SOLUTION

$$4x^2 - 10x = 2x - 9$$

 $4x^2 - 12x + 9 = 0$

Write original equation.

Use the Quadratic Formula and Discriminant

Write in standard form.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
Quadratic formula
$$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(4)(9)}}{2(4)} a = 4, b = -12, c = 9$$

for Examples 1, 2, and 3

$$x = \frac{12 \pm \sqrt{0}}{8}$$

Simplify.

for Examples 1, 2, and 3

Use the Quadratic Formula and Discriminant

ANSWER

The solution is
$$\frac{3}{2} = 1 \frac{1}{2}$$
.

Use the quadratic formula to solve the equation.

$$3. \quad 7x - 5x^2 - 4 = 2x + 3$$

GUIDED PRACTICE

SOLUTION

$$7x - 5x^2 - 4 = 2x + 3$$

$$-5x^2 + 5x - 7 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-(5) \pm \sqrt{(5)^2 - 4(-5)(-7)}}{2(-5)}$$

 $x = -5 \pm \sqrt{-115}$

- 10

Write original equation.

Write in standard form.

Quadratic formula

$$a = -5, b = 5, c = -7$$

 $x = \frac{-5 \pm i \sqrt{115}}{-10}$

GUIDED PRACTICE

Rewrite using the imaginary unit *i*.

Simplify.

ANSWER

The solutions are $\frac{5+i\sqrt{115}}{10}$ and $\frac{5-i\sqrt{115}}{10}$.

Use the discriminant

EXAMPLE 4

Find the discriminant of the quadratic equation and give the number and type of solutions of the equation.

b. $x^2 - 8x + 16 = 0$ **a.** $x^2 - 8x + 17 = 0$ c. $x^2 - 8x + 15 = 0$ SOLUTION Equation Discriminant Solution(s) $x = \underline{-b} \pm \sqrt{b^2 - 4ac}$ $ax^{2} + bx + c = 0$ $b^{2} - 4ac$ **a**. $x^2 - 8x + 17 = 0$ $(-8)^2 - 4(1)(17) = -4$ Two imaginary: $4 \pm i$ **b**. $x^2 - 8x + 16 = 0$ $(-8)^2 - 4(1)(16) = 0$ **One real:** 4 **b**. $x^2 - 8x + 15 = 0$ (-8)² - 4(1)(15) = 0 **Two real:** 3,5

Find the discriminant of the quadratic equation and give the number and type of solutions of the equation.

for Example 4

$$4. \quad 2x^2 + 4x - 4 = 0$$

GUIDED PRACTICE

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$2x^2 + 4x - 4 = 0$	$4^2 - 4(2)(-4)$	Two real solutions

5.
$$3x^2 + 12x + 12 = 0$$

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$3x^2 + 12x + 12 = 0$	$12^2 - 4(12)(3)$	<i>2ac</i>
	= 0	One real solution

6.
$$8x^2 = 9x - 11$$

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$8x^2 - 9x + 11 = 0$	$(-9)^2 - 4(8)(11)$	2ac
	= - 271	Two imaginary solutions

7. $7x^2 - 2x = 5$

GUIDED PRACTICE

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$7x^2 - 2x - 5 = 0$	$(-2)^2 - 4(7)(-5)$	<i>Two real solutions</i>
	= 144	

8.
$$4x^2 + 3x + 12 = 3 - 3x$$

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$4x^2 + 6x + 9 = 0$	$(6)^2 - 4(4)(9)$	2 <i>ac</i> Two imaginary
	= -108	solutions

9.
$$3x - 5x^2 + 1 = 6 - 7x$$

SOLUTION

Equation	Discriminant	Solution(s)
$ax^2 + bx + c = 0$	$b^2 - 4ac$	$x = \underline{-b \pm \sqrt{b^2 - 4ac}}$
$-5x^2 + 4x - 5 = 0$	$(4)^2 - 4(-5)(-5)$	2ac
	= 0	One real solution

Juggling

A juggler tosses a ball into the air. The ball leaves the juggler's hand 4 feet above the ground and has an initial vertical velocity of 40 feet per second. The juggler catches the ball when it falls back to a height of 3 feet. How long is the ball in the air?

SOLUTION

Because the ball is thrown, use the model $h = -16t^2 + v_0t + h_0$. To find how long the ball is in the air, solve for *t* when h = 3.

Use the Quadratic Formula and Discriminant Solve a vertical motion problem

$$h = -16t^2 + v_0 t + h_0$$

$$3 = -16t^2 + 40t + 4$$

Write height model.

Substitute 3 for h, 40 for v_0 , and 4 for h_0 .

 $0 = -16t^2 + 40t + 1$

Write in standard form.

$$t = \frac{-40 \pm \sqrt{40^2 - 4(-16)(1)}}{2(-16)}$$
Quadratic formula
$$t = \frac{-40 \pm \sqrt{1664}}{-32}$$
Simplify.
$$t \approx -0.025 \text{ or } \approx 2.5$$
Use a calculator.

Solve a vertical motion problem

ANSWER

Reject the solution -0.025 because the ball's time in the air cannot be negative. So, the ball is in the air for about 2.5 seconds.

10. What If? In Example 5, suppose the ball leaves the juggler's hand with an initial vertical velocity of 50 feet per second. How long is the ball in the air?

for Example 5

SOLUTION

GUIDED PRACTICE

Because the ball is thrown, use the model $h = -16t^2 + v_0t + h_0$. To find how long the ball is in the air, solve for *t* when h = 3.

for Example 5

$$h = -16t^2 + v_0 t + h_0$$

$$3 = -16t^2 + 50t + 4$$

 $0 = -16t^2 + 40t + 1$

Write height model. Substitute 3 for h, 50 for v_0 , and 4 for h_0 .

Write in standard form.

 $t = \frac{-50 \pm \sqrt{50^2 - 4(-16)(1)}}{2(-16)}$ Quadratic formula $t = \frac{-50 \pm \sqrt{2564}}{-32}$ Simplify.

 $t \approx -0.01$ or $t \approx 3.1$ Use a calculator.

ANSWER

GUIDED PRACTICE

Reject the solution -0.01 because the ball's time in the air cannot be negative. So, the ball is in the air for about 2.5 seconds.