Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

a.
$$h(x) = x^4 - \frac{1}{4}x^2 + 3$$

SOLUTION

EXAMPLE 1

 a. The function is a polynomial function that is already written in standard form. It has degree 4 (quartic) and a leading coefficient of 1.

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

b.
$$g(x) = 7x - \sqrt{3} + \pi x^2$$

SOLUTION

EXAMPLE 1

b. The function is a polynomial function written as $g(x) = \pi x^2 + 7x - \sqrt{3}$ in standard form. It has degree 2(quadratic) and a leading coefficient of π .

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

c.
$$f(x) = 5x^2 + 3x^{-1} - x$$

SOLUTION

EXAMPLE 1

c. The function is not a polynomial function because the term $3x^{-1}$ has an exponent that is not a whole number.

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

d.
$$k(x) = x + 2^x - 0.6x^5$$

SOLUTION

EXAMPLE 1

d. The function is not a polynomial function because the term 2^x does not have a variable base and an exponent that is a whole number.

Evaluate by direct substitution

Use direct substitution to evaluate $f(x) = 2x^4 - 5x^3 - 4x + 8$ when x = 3.

$$f(\mathbf{x}) = 2\mathbf{x}^4 - 5\mathbf{x}^3 - 4\mathbf{x} + 8$$

$$f(\mathbf{3}) = 2(\mathbf{3})^4 - 5(\mathbf{3})^3 - 4(\mathbf{3}) + 8$$

$$= 162 - 135 - 12 + 8$$

$$= 23$$

EXAMPLE 2

Write original function. Substitute 3 for *x*. Evaluate powers and multiply. Simplify

for Examples 1 and 2

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1.
$$f(x) = 13 - 2x$$

GUIDED PRACTICE

SOLUTION

$$f(x) = -2x + 13$$

It is a polynomial function. Standard form: -2x + 13Degree: 1 Type: linear Leading coefficient of -2.

for Examples 1 and $\overset{\text{Evaluate and Graph Polynomials Functions}}{2}$

2.
$$p(x) = 9x^4 - 5x^{-2} + 4$$

SOLUTION

$$p(x) = 9x^4 - 5x^{-2} + 4$$

The function is not a polynomial function.

3. $h(x) = 6x^2 + \pi - 3x$

GUIDED PRACTICE

SOLUTION

 $h(x) = 6x^2 - 3x + \pi$

The function is a polynomial function that is already written in standard form will be $6x^2 - 3x + \pi$. It has degree 2 (linear) and a leading coefficient of 6.

It is a polynomial function. Standard form: $6x2-3x + \pi$ Degree: 2 Type: quadratic Leading coefficient of 6 Use direct substitution to evaluate the polynomial function for the given value of *x*.

GUIDED PRACTICE

4.
$$f(x) = x^4 + 2x^3 + 3x^2 - 7; x = -2$$

SOLUTION
 $f(x) = x^4 + 2x^3 + 3x^2 - 7; x = -2$ Write original function.
 $f(-2) = (-2)^4 + 2(-2)^3 + 3(-2)^2 - 7$ Substitute-2 for x.
 $= 16 - 16 + 12 - 7$ Evaluate powers and multiply.
 $= 5$ Simplify

for Examples 1 and 2

5. $g(x) = x^3 - 5x^2 + 6x + 1; x = 4$

SOLUTION

GUIDED PRACTICE

$$g(x) = x^{3} - 5x^{2} + 6x + 1; x = 4$$
$$g(x) = 4^{3} - 5(4)^{2} + 6(4) + 1$$
$$= 64 - 80 + 24 + 1$$
$$= 9$$

Write original function.

Substitute 4 for *x*.

Evaluate powers and multiply. Simplify **Evaluate by synthetic substitution**

Use synthetic substitution to evaluate f(x) from Example 2 when x = 3. f(x) = 2x4 - 5x3 - 4x + 8

SOLUTION

EXAMPLE 3

STEP 1 Write the coefficients of f(x) in order of descending exponents. Write the value at which f(x) is being evaluated to the left.

Evaluate by synthetic substitution

STEP 2 Bring down the leading coefficient. **Multiply** the leading coefficient by the *x*-value. Write the product under the second coefficient. Add.

EXAMPLE 3

STEP 3 Multiply the previous sum by the *x*-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of *f(x)* at the given *x*-value.

Evaluate by synthetic substitution

EXAMPLE 3

ANSWER Synthetic substitution gives f(3) = 23, which matches the result in Example 2.

Standardized Test Practice

What is true about the degree and leading coefficient of the polynomial function whose graph is shown?

(A) Degree is odd; leading coefficient is positive

EXAMPLE 4

- B Degree is odd; leading coefficient is negative
- ⓒ Degree is even; leading coefficient is positive
- Degree is even; leading coefficient is negative

From the graph, $f(x) \rightarrow -\infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow -\infty$ as $x \rightarrow +\infty$. So, the degree is even and the leading coefficient is negative.

ANSWER The correct answer is D. (A) (B) (C) (D)

Use synthetic substitution to evaluate the polynomial function for the given value of *x*.

6.
$$f(x) = 5x^3 + 3x^2 - x + 7; x = 2$$

GUIDED PRACTICE

STEP 1 Write the coefficients of f(x) in order of descending exponents. Write the value at which f(x) is being evaluated to the left.

x-value
$$\rightarrow$$
 2 5 3 1 7 \leftarrow coefficients

for Examples 3 and 4

STEP 2 Bring down the leading coefficient. **Multiply** the leading coefficient by the *x*-value. Write the product under the second coefficient. Add.

GUIDED PRACTICE

STEP 3 Multiply the previous sum by the *x*-value.
Write the product under the third coefficient.
Add. Repeat for all of the remaining coefficients. The final sum is the value of *f(x)* at the given *x*-value.

GUIDED PRACTICE

for Examples 3 and 4

Synthetic substitution gives f(2) = 57ANSWER

for Examples 3 and 4

7.
$$g(x) = -2x^4 - x^3 + 4x - 5; x = -1$$

T

STEP 1 Write the coefficients of g(x) in order of descending exponents. Write the value at which g(x) is being evaluated to the left.

x-value
$$\rightarrow -1$$
 -2 -1 0 4 -5 \leftarrow coefficients

STEP 2 Bring down the leading coefficient. **Multiply** the leading coefficient by the *x*-value. Write the product under the second coefficient. Add.

STEP 3

GUIDED PRACTICE

Multiply the previous sum by the *x*-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of f(x) at the given *x*-value.

GUIDED PRACTICE

T

for Examples 3 and 4

ANSWER Synthetic substitution gives f(-1) = -10

8. Describe the degree and leading coefficient of the polynomial function whose graph is shown.

ANSWER

GUIDED PRACTICE

degree: odd, leading coefficient: negative

EXAMPLE 5 **Graph polynomial functions**

Graph (a)
$$f(x) = -x^3 + x^2 + 3x - 3$$
 and
(b) $f(x) = 5x^4 - x^3 - 4x^2 + 4$.

SOLUTION

To graph the function, make a table **a**. of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

The degree is odd and leading coefficient is negative. So, $f(x) \to +\infty$ as $x \to -\infty$ and $f(x) \to -\infty$ as $x \to +\infty$.

Graph polynomial functions

 b. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

EXAMPLE 5

x	-3	-2	-1	0	1	2	3
У	76	12	2	4	0	-4	22

The degree is even and leading coefficient is positive. So, $f(x) \rightarrow \infty$ as $x \rightarrow -\infty$ and $f(x) \rightarrow \infty$ as $x \rightarrow +\infty$.

Solve a multi-step problem

Physical Science

EXAMPLE 6

The energy *E* (in foot-pounds) in each square foot of a wave is given by the model $E = 0.0029s^4$ where *s* is the wind speed (in knots). Graph the model. Use the graph to estimate the wind speed needed to generate a wave with 1000 foot-pounds of energy per square foot.

Solve a multi-step problem

SOLUTION

EXAMPLE 6

STEP 1 Make a table of values. The model only deals with positive values of *s*

5	0	10	20	30	40
E	0	29	464	2349	7424

Solve a multi-step problem

EXAMPLE 6

- **STEP 2** Plot the points and connect them with a smooth curve. Because the leading coefficient is positive and the degree is even, the graph rises to the right.
- **STEP 3** Examine the graph to see that $s \approx 24$ when E = 1000.

ANSWER The wind speed needed to generate the wave is about 24 knots.

Graph the polynomial function.

9.
$$f(x) = x^4 + 6x^2 - 3$$

GUIDED PRACTICE

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

10. $f(x) = 2x^3 + x^2 + x - 1$

GUIDED PRACTICE

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2
У	40	9	0	-1.7	-3	2

11. $f(x) = 4 - 2x^3$ **SOLUTION**

GUIDED PRACTICE

a. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

X	-2	-1	0	1	2
У	20	6	4	-12	2

for Examples 5 and 6

12. WHAT IF? If wind speed is measured in miles per hour, the model in Example 6 becomes $E = 0.0051s^4$. Graph this model. What wind speed is needed to generate a wave with 2000 foot-pounds of energy per square foot?

GUIDED PRACTICE

