EXAMPLE 1) Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
a. $\quad h(x)=x^{4}-\frac{1}{4} x^{2}+3$

SOLUTION

a. The function is a polynomial function that is already written in standard form. It has degree 4 (quartic) and a leading coefficient of 1.

EXAMPLE 1) Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
b. $g(x)=7 x-\sqrt{3}+\pi x^{2}$

SOLUTION

b. The function is a polynomial function written as $g(x)=\pi x^{2}+7 x-\sqrt{3}$ in standard form. It has degree 2(quadratic) and a leading coefficient of π.

EXAMPLE 1) Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
c. $f(x)=5 x^{2}+3 x^{-1}-x$

SOLUTION

c. The function is not a polynomial function because the term $3 x^{-1}$ has an exponent that is not a whole number.

EXAMPLE 1 Identify polynomial functions

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.
d. $k(x)=x+2^{x}-0.6 x^{5}$

SOLUTION

d. The function is not a polynomial function because the term 2^{x} does not have a variable base and an exponent that is a whole number.

Use direct substitution to evaluate

$$
f(x)=2 x^{4}-5 x^{3}-4 x+8 \text { when } x=3 .
$$

$$
\begin{aligned}
f(x) & =2 x^{4}-5 x^{3}-4 x+8 \\
f(3) & =2(3)^{4}-5(3)^{3}-4(3)+8 \\
& =162-135-12+8 \\
& =23
\end{aligned}
$$

Write original function.
Substitute 3 for x.
Evaluate powers and multiply.
Simplify

GUIDED PRACTICE

Decide whether the function is a polynomial function. If so, write it in standard form and state its degree, type, and leading coefficient.

1. $f(x)=13-2 x$

SOLUTION

$f(x)=-2 x+13$
It is a polynomial function.
Standard form: - $2 \mathrm{x}+13$
Degree: 1
Type: linear
Leading coefficient of -2 .

GUIDED PRACTICE

2. $p(x)=9 x^{4}-5 x^{-2}+4$

SOLUTION

$$
p(x)=9 x^{4}-5 x^{-2}+4
$$

The function is not a polynomial function.

GUIDED PRACTICE for Examples 1 and 2

3. $h(x)=6 x^{2}+\pi-3 x$

SOLUTION

$h(x)=6 x^{2}-3 x+\pi$
The function is a polynomial function that is already written in standard form will be $6 x^{2}-3 x+\pi$. It has degree 2 (linear) and a leading coefficient of 6.

It is a polynomial function.
Standard form: $6 x 2-3 x+\pi$
Degree: 2
Type: quadratic
Leading coefficient of 6

Use direct substitution to evaluate the polynomial function for the given value of x.

4. $f(x)=x^{4}+2 x^{3}+3 x^{2}-7 ; x=-2$

SOLUTION

$$
\begin{aligned}
f(x) & =x^{4}+2 x^{3}+3 x^{2}-7 ; x=-2 & & \text { Write original function. } \\
f(-2) & =(-2)^{4}+2(-2)^{3}+3(-2)^{2}-7 & & \text { Substitute-2 for } x . \\
& =16-16+12-7 & & \text { Evaluate powers and multiply. } \\
& =5 & & \text { Simplify }
\end{aligned}
$$

GUIDED PRACTICE

5. $g(x)=x^{3}-5 x^{2}+6 x+1 ; x=4$

SOLUTION

$$
\begin{aligned}
g(x) & =x^{3}-5 x^{2}+6 x+1 ; x=4 \\
g(x) & =4^{3}-5(4)^{2}+6(4)+1 \\
& =64-80+24+1 \\
& =9
\end{aligned}
$$

Write original function.
Substitute 4 for x.
Evaluate powers and multiply. Simplify

EXAMPLE 3 Evalate and Graph Poyymomias funcions

EXAMPLE 3 Evaluate by synthetic substitution

Use synthetic substitution to evaluate $f(x)$ from Example 2 when $x=3$.
$f(x)=2 x 4-5 x 3-4 x+8$

SOLUTION

STEP 1 Write the coefficients of $f(x)$ in order of descending exponents. Write the value at which $f(x)$ is being evaluated to the left.

$$
\begin{array}{l|llllll}
x \text {-value } \rightarrow & 3 & -5 & 0 & -4 & 8 & \leftarrow \text { coefficients }
\end{array}
$$

STEP 2 Bring down the leading coefficient. Multiply the leading coefficient by the x-value. Write the product under the second coefficient. Add.

STEP 3 Multiply the previous sum by the x-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of $f(x)$ at the given x-value.

ANSWER
Synthetic substitution gives $f(3)=23$, which matches the result in Example 2.

What is true about the degree and leading coefficient of the polynomial function whose graph is shown?
(A) Degree is odd; leading coefficient is positive
(B) Degree is odd; leading coefficient is negative
(C) Degree is even; leading coefficient is positive

(D) Degree is even; leading coefficient is negative

From the graph, $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$. So, the degree is even and the leading coefficient is negative.

ANSWER The correct answer is D. (A) (B) (C)

GUIDED PRACTICE

Use synthetic substitution to evaluate the polynomial function for the given value of x.
6. $f(x)=5 x^{3}+3 x^{2}-x+7 ; x=2$

STEP 1 Write the coefficients of $f(x)$ in order of descending exponents. Write the value at which $f(x)$ is being evaluated to the left.

```
x-value }->2|{\begin{array}{lllll}{5}&{3}&{-1}&{7}&{\leftarrow\mathrm{ coefficients}}
```

GUIDED PRACTICE for Examples 3 and 4

STEP 2 Bring down the leading coefficient. Multiply the leading coefficient by the x-value. Write the product under the second coefficient. Add.

STEP 3 Multiply the previous sum by the x-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of $f(x)$ at the given x-value.

GUIDED PRACTICE

ANSWER Synthetic substitution gives $f(2)=57$

GUIDED PRACTICE
7. $g(x)=-2 x^{4}-x^{3}+4 x-5 ; x=-1$

STEP 1 Write the coefficients of $g(x)$ in order of descending exponents. Write the value at which $g(x)$ is being evaluated to the left.

$$
x \text {-value } \rightarrow-1 \left\lvert\, \begin{array}{llllll}
& -1 & -1 & 0 & 4 & -5
\end{array} \longleftarrow\right. \text { coefficients }
$$

GUIDED PRACTICE

STEP 2 Bring down the leading coefficient. Multiply the leading coefficient by the x-value. Write the product under the second coefficient. Add.

$$
\begin{array}{ccc}
-1 & \begin{array}{rrrr}
-2 & -1 & 0 & 4
\end{array}-5 \\
& & \\
& & \\
& & \\
& -2 & 1
\end{array}
$$

STEP 3
Multiply the previous sum by the x-value. Write the product under the third coefficient. Add. Repeat for all of the remaining coefficients. The final sum is the value of $f(x)$ at the given x-value.

GUIDED PRACTICE

ANSWER Synthetic substitution gives $f(-1)=-10$
8. Describe the degree and leading coefficient of the polynomial function whose graph is shown.

ANSWER

degree: odd, leading coefficient: negative

EXAMPLE 5
 Graph polynomial functions

Graph (a) $f(x)=-x^{3}+x^{2}+3 x-3$ and (b) $f(x)=5 x^{4}-x^{3}-4 x^{2}+4$.

SOLUTION

a. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2	3
y	24	3	-4	-3	0	-1	-12

The degree is odd and leading coefficient is negative. So, $f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$.
b. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2	3
y	76	12	2	4	0	-4	22

The degree is even and leading coefficient is positive. So, $f(x) \rightarrow \infty$ as $x \rightarrow-\infty$ and $f(x) \rightarrow \infty$ as $x \rightarrow+\infty$.

Physical Science

The energy E (in foot-pounds) in each square foot of a wave is given by the model $E=0.0029 s^{4}$ where s is the wind speed (in knots). Graph the model. Use the graph to estimate the wind speed needed to generate a wave with 1000 foot-pounds of energy per square foot.

EXAMPLE 6 Solve a multi-step problem

SOLUTION

STEP 1 Make a table of values. The model only deals with positive values of s

\boldsymbol{s}	0	10	20	30	40
\boldsymbol{E}	0	29	464	2349	7424

EXAMPLE 6 Solve a multi-step problem

STEP 2 Plot the points and connect them with a smooth curve. Because the leading coefficient is positive and the degree is even, the graph rises to the right.

STEP 3 Examine the graph to see that $s \approx 24$ when $E=1000$.

ANSWER The wind speed needed to generate the wave is about 24 knots.

GUIDED PRACTICE

Graph the polynomial function.
9. $f(x)=x^{4}+6 x^{2}-3$

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-2	-1	0	1	2
y	37	4	-3	4	37

GUIDED PRACTICE

10. $f(x)=2 x^{3}+x^{2}+x-1$

SOLUTION

To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-3	-2	-1	0	1	2
y	40	9	0	-1.7	-3	2

$$
\text { 11. } f(x)=4-2 x^{3}
$$

SOLUTION

a. To graph the function, make a table of values and plot the corresponding points. Connect the points with a smooth curve and check the end behavior.

x	-2	-1	0	1	2
y	20	6	4	-12	2

12. WHAT IF? If wind speed is measured in miles per hour, the model in Example 6 becomes $E=0.0051 s^{4}$. Graph this model. What wind speed is needed to generate a wave with 2000 foot-pounds of energy per square foot?

ANSWER

about $25 \mathrm{mi} / \mathrm{h}$.

