EXAMPLE 1

Find nth roots

Find the indicated real nth root(s) of a.

a.
$$n = 3, a = -216$$

b.
$$n = 4, a = 81$$

SOLUTION

- a. Because n = 3 is odd and a = -216 < 0, -216 has one real cube root. Because $(-6)^3 = -216$, you can write $= \sqrt[3]{-216} = -6$ or $(-216)^{1/3} = -6$.
- b. Because n=4 is even and a=81>0, 81 has two real fourth roots. Because $3^4=81$ and $(-3)^4=81$, you can write $\pm 4\sqrt{81}=\pm 3$

EXAMPLE 2

Evaluate expressions with rational exponents

Evaluate (a) $16^{3/2}$ and (b) $32^{-3/5}$.

SOLUTION

Rational Exponent Form

a.
$$16^{3/2} = (16^{1/2})^3 = 4^3 = 64$$

b.
$$32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(32^{1/5})^3}$$
$$= \frac{1}{2^3} = \frac{1}{8}$$

Radical Form

$$16^{3/2} = (\sqrt{16})^3 = 4^3 = 64$$

$$32^{-3/5} = \frac{1}{32^{3/5}} = \frac{1}{(\sqrt[5]{32})^3}$$
$$= \frac{1}{2^3} = \frac{1}{8}$$

Approximate roots with a calculator

Expression

Keystrokes

Display

91/5 a.

ENTER

1.551845574

 $12^{3/8}$ b.

2.539176951

c. $(\sqrt[4]{7})^3 = 7^{3/4} 7$

4.303517071

GUIDED PRACTICE

for Examples 1, 2 and 3

Find the indicated real nth root(s) of a.

1.
$$n = 4$$
, $a = 625$

SOLUTION

Because n = 4 is even and a = 625 > 0, 625 has two real nth roots. Because $5^4 = 625$ and $(-5)^4 = 625$, you can write $4\sqrt{625} = \pm 5$ or $\pm (625)1/4 = \pm 5$.

2.
$$n = 6$$
, $a = 64$

SOLUTION

Because n = 6 is even and a = 64 > 0, 64 has two real nth roots. Because $2^6 = 64$ and $(-2)^6 = 64$, you can write $6\sqrt{64} = \pm 2$ or $\pm (64)^{1/6} = \pm 2$.

GUIDED PRACTICE

for Examples 1, 2 and 3

Find the indicated real nth root(s) of a.

3.
$$n = 3, a = -64$$
.

SOLUTION

Because n = 3 is odd and a = -64 < 0, -64 has one real cube root. Because $(-4)^3 = -64$, you can write $\sqrt[3]{-64} = -4$ or $(-64)^{1/3} = -4$.

4.
$$n = 5$$
, $a = 243$

SOLUTION

Because n = 5 is odd and a = 243 > 0, 243 has one real nth root. Because $(3)^5 = 243$, you can write $\sqrt[5]{243} = 3$ or $(243)^{1/5} = 3$.

GUIDED PRACTICE for Examples 1, 2 and 3

Evaluate expressions without using a calculator.

5. 4^{5/2}

SOLUTION

$$4^{5/2} = (4^{1/2})^5 = 2^5 = 32$$

6. $9^{-1/2}$

SOLUTION

$$9^{-1/2} = (9^{1/2})^{-1} = 3^{-1} = \frac{1}{3}$$

GUIDED PRACTICE for Examples 1, 2 and 3

Evaluate expressions without using a calculator.

7. 81^{3/4}

SOLUTION

$$81^{3/4} = (81^{1/4})^3 = 3^3 = 27$$

8. 1^{7/8}

SOLUTION

$$1^{7/8} = (1^{1/8})^7 = (1)^7 = 1$$

GUIDED PRACTICE

for Examples 1, 2 and 3

Evaluate the expression using a calculator. Round the result to two decimal places when appropriate.

Expression		Keystrokes	Display
9.	4 ^{2/5}	4 ^ (2 ÷ 5) ENTER	1.74
10.	64 ^{-2/3}	$\frac{1}{64}$ $(-2 \div 3)$ ENTER	0.06
11.	$(4\sqrt{16})^5$	16 ^ (5 ÷ 4) ENTER	32
12.	$(3\sqrt{-30})^2$	-30 ($2 \div 3$) ENTER	9.65

Solve equations using *nth* roots

Solve the equation.

a.
$$4x^5 = 128$$

$$x^5 = 32$$

$$x = \sqrt[5]{32}$$

$$x = 2$$

Divide each side by 4.

Take fifth root of each side.

EXAMPLE 4)

Solve equations using nth roots

b.
$$(x-3)^4 = 21$$

$$x-3 = \pm \sqrt[4]{21}$$

$$x = \pm \sqrt[4]{21} + 3$$

$$x = \sqrt[4]{21} + 3$$
 or $x = -\sqrt[4]{21} + 3$ Write solutions

$$x \approx 5.14$$
 or $x \approx 0.86$

Take fourth roots of each side.

Add 3 to each side.

separately.

Use nth roots in problem solving

Biology

A study determined that the weight w (in grams) of coral cod near Palawan Island, Philippines, can be approximated using the model

$$w = 0.0167\ell^{-3}$$

where *l* is the coral cod's length (in centimeters). Estimate the length of a coral cod that weighs 200 grams.

SOLUTION

$$w = 0.0167 l^3$$

$$200 = 0.0167 l^3$$

$$11,976 \approx l^3$$

Divide each side by
$$0.0167$$
.

$$\sqrt[3]{11,976} \approx l$$

 $22.9 \approx 1$

Use a calculator.

ANSWER

A coral cod that weighs 200 grams is about 23 centimeters long.

Solve the equation. Round the result to two decimal places when appropriate.

13.
$$x^3 = 64$$

SOLUTION

$$x^3 = 64$$

$$x = \sqrt[3]{64}$$

take 3rd root of each side.

$$x = 4$$

14.
$$\frac{1}{2}x^5 = 512$$

SOLUTION

$$\frac{1}{2}x^5 = 512$$

$$x^5 = 1024$$

Multiply each side by 2.

$$x = \sqrt[5]{1024}$$

take 5th root of each side.

$$x = 4$$

15.
$$3x^2 = 108$$

SOLUTION

$$3x^2 = 108$$

$$x^2 = 36$$

Divide each side by 3.

$$x = \sqrt[2]{36}$$

take 2nd root of each side.

$$x = \pm 6$$

16.
$$\frac{1}{4}x^3 = 2$$

SOLUTION

$$\frac{1}{4}x^3 = 2$$

$$x^3 = 8$$

$$x = \sqrt[3]{8}$$

$$x = 2$$

Multiply each side by 4.

take 3rd root of each side.

GUIDED PRACTICE

for Examples 4 and 5

17.
$$(x-2)^3 = -14$$

SOLUTION

$$(x-2)^3 = -14$$

$$(x-2) = \sqrt[3]{14}$$

$$x = \sqrt[3]{14 + 2}$$

$$x = \sqrt[3]{-14 + 2}$$

$$x = -0.41$$

take 3rd root of each side.

add 2 to both sides.

Write solution.

18.
$$(x+5)^4 = 16$$

SOLUTION

$$(x+5)^4 = 16$$

$$(x+5) = \pm \sqrt[4]{16}$$

$$x = \pm \sqrt[4]{16} - 5$$

$$x = 2-5$$
 or $x = -2-5$

$$x = -3$$
 or $x = -7$

take 4th root of each side.

add 5 to each side.

Write solutions separately.

- 19. WHAT IF? Use the information from Example 5 to estimate the length of a coral cod that has the given weight.
- **a.** 275 grams

SOLUTION

$$w = 0.0167l^3$$

$$275 = 0.0167l^3$$

$$16467 = l^3$$

$$\sqrt[3]{16467} = l$$

$$25 = l$$

Write model for weight.

Substitute 275 for w.

Divide each side by 0.0167.

Take cube root of each side.

ANSWER

A coral cod that has the 275 grams is about 25 cm long.

b. 340 grams

SOLUTION

$$w = 0.0167l^3$$

Write model for weight.

$$340 = 0.0167l^3$$

Substitute 340 for w.

$$20360 = l^3$$

Divide each side by 0.0167

$$\sqrt[3]{20360} = l$$

Take cube root of each side

$$27 = l$$

Use a calculator

ANSWER

A coral cod that has the 340 grams is about 27 cm long.

c. 450 grams

SOLUTION

$$w = 0.0167l^3$$

Write model for weight.

$$450 = 0.0167l^3$$

Substitute 450 for w.

$$26946 = l^3$$

Divide each side by 0.0167

$$\sqrt[3]{26946} = l$$

Take cube root of each side

$$30 = l$$

Use a calculator

ANSWER

A coral cod that has the 450 grams is about 30 cm long.