EXAMPLE 1 Add and subtract functions

Let $f(x)=4 x^{1 / 2}$ and $g(x)=-9 x^{1 / 2}$. Find the following.
a. $f(x)+g(x)$

SOLUTION

$$
f(x)+g(x)=4 x^{1 / 2}+\left(-9 x^{1 / 2}\right)=[4+(-9)] x^{1 / 2}=-5 x^{1 / 2}
$$

b. $f(x)-g(x)$

SOLUTION

$$
f(x)-g(x)=4 x^{1 / 2}-\left(-9 x^{1 / 2}\right)=[4-(-9)] x^{1 / 2}=13 x^{1 / 2}
$$

EXAMPLE 1) Add and subtract functions

c. the domains of $f+g$ and $f-g$

SOLUTION

The functions f and g each have the same domain: all nonnegative real numbers. So, the domains of $f+g$ and $f-g$ also consist of all nonnegative real numbers.

EXAMPLE 2 Multiply and divide functions

Let $f(x)=6 x$ and $g(x)=x^{3 / 4}$. Find the following.
a. $\quad f(x) \cdot g(x)$

SOLUTION

$$
f(x) \cdot g(x)=(6 x)\left(x^{3 / 4}\right)=6 x^{(1+3 / 4)}=6 x^{7 / 4}
$$

b. $\frac{f(x)}{g(x)}$

SOLUTION

$$
\frac{f(x)}{g(x)}=\frac{6 x}{x^{3 / 4}}=6 x^{(1-3 / 4)}=6 x^{1 / 4}
$$

EXAMPLE 2 Multiply and divide functions

c. the domains of $f \cdot g$ and $\frac{f}{g}$

SOLUTION

The domain of f consists of all real numbers, and the domain of g consists of all nonnegative real numbers. So, the domain of $f \cdot g$ consists of all nonnegative real numbers. Because $g(0)=0$, the domain of $\frac{f}{g}$ is restricted to all positive real numbers.

EXAMPLE 3 Solve a multi-step problem

Rhinos

For a white rhino, heart rate r (in beats per minute) and life span s (in minutes) are related to body mass m (in kilograms) by these functions:

$$
r(m)=241 m^{-0.25} \quad s(m)=\left(6 \times 10^{6}\right) m^{0.2}
$$

- Find $r(m) \cdot s(m)$.
- Explain what this product represents.

EXAMPLE 3 Solve a multi-step problem

SOLUTION

STEP 1

Find and simplify $r(m) \cdot s(m)$.

$$
\begin{aligned}
r(m) \cdot s(m) & =241 m^{-0.25}\left[\left(6 \times 10^{6}\right) m^{0.2}\right]
\end{aligned} \begin{aligned}
& \text { Write product of } r(m) \\
& \text { and } s(m) .
\end{aligned}
$$

EXAMPLE 3 Solve a multi-step problem

STEP 2

Interpret $r(m) \cdot s(m)$.
Multiplying heart rate by life span gives the total number of heartbeats for a white rhino over its entire lifetime.

GUIDED PRACTICE

Let $f(x)=-2 x^{2 / 3}$ and $g(x)=7 x^{2 / 3}$. Find the following.

1. $f(x)+g(x)$

SOLUTION

$$
f(x)+g(x)=-2 x^{2 / 3}+7 x^{2 / 3}=(-2+7) x^{2 / 3}=5 x^{2 / 3}
$$

2. $f(x)-g(x)$

SOLUTION

$$
f(x)-g(x)=-2 x^{2 / 3}-7 x^{2 / 3}=[-2+(-7)] x^{2 / 3}=-9 x^{2 / 3}
$$

GUIDED PRACTICE
 for Examples 1, 2, and 3

3. the domains of $f+g$ and $f-g$

SOLUTION

The domains of f and g have the same domain: all nonnegative real numbers. So , the domain of $f+g$ and $f-g$ also consist of all non-negative real numbers.

GUIDED PRACTICE

Let $f(x)=3 x$ and $g(x)=x^{1 / 5}$. Find the following.
4. $f(x) \cdot g(x)$

SOLUTION

$$
f(x) \cdot g(x)=3 x \cdot x^{1 / 5}=3(x)^{1+1 / 5}=3 x^{6 / 5}
$$

5. $\frac{f(x)}{g(x)}$

SOLUTION

$$
\frac{f(x)}{g(x)}=\frac{3 x}{x^{1 / 5}}=3(x)^{1-1 / 5}=3 x^{4 / 5}
$$

GUIDED PRACTICE
 for Examples 1, 2, and 3

6. the domains of $f \cdot g$ and $\frac{f}{g}$

SOLUTION

The domain of $f \bullet g$ consists of all real numbers.
The domain of $\frac{f}{g}$ consists of all real numbers except
$\boldsymbol{x}=0$.

GUIDED PRACTICE

Rhinos

7. Use the result of Example 3 to find a white rhino's number of heartbeats over its lifetime if its body mass is 1.7×10^{5} kilograms.

ANSWER about 7.92×10^{8} heartbeats

EXAMPLE 4) Standardized Test Practice

Let $f(x)=2 x-7$ and $g(x)=x^{2}+4$. What is the value of $g(f(3))$?
(A) -5
(B) -3
(C) 3
(D) 5

SOLUTION

To evaluate $g(f(3))$, you first must find $f(3)$.

$$
f(3)=2(3)-7=-1
$$

Then $g(f(3))=g(-1)=(-1)^{2}+4=1+4=5$.
So, the value of $g(f(3))$ is 5 .

EXAMPLE 4 Standardized Test Practice

ANSWER

The correct answer is D. (A) (B) (C) (D)

EXAMPLE 5 Find compositions of functions

Let $f(x)=4 x^{-1}$ and $g(x)=5 x-2$. Find the following.

a. $f(g(x))$

SOLUTION

$$
f(g(x))=f(5 x-2)=4(5 x-2)^{-1}=\frac{4}{5 x-2}
$$

b. $\quad g(f(x))$

SOLUTION

$$
g(f(x))=g\left(4 x^{-1}\right)=5(4 x-1)-2=-20 x^{-1}-2=\frac{20}{x}-2
$$

c. $f(f(x))$

SOLUTION

$$
\begin{aligned}
f(f(x)) & =f\left(4 x^{-1}\right) \\
& =4\left(4 x^{-1}\right)^{-1} \\
& =4\left(4^{-1} x\right) \\
& =4^{0} x \\
& =x
\end{aligned}
$$

EXAMPLE 5) Find compositions of functions

d. The domain of $f(g(x))$ consists of all real numbers except $x \frac{1}{2}$ because $g\left(\frac{2}{5}\right)=0$ is not in the domain of f. (Note that $f(0)=\left(\frac{4}{0}\right)$, which is undefined.) The domains of $g(f(x))$ and $f(f(x))$ consist of all real numbers except $x=0$, again because 0 is not in the domain of f.

EXAMPLE 6 Solve a multi-step problem

Paint Store

You have a $\$ 10$ gift certificate to a paint store. The store is offering 15% off your entire purchase of any paints and painting supplies. You decide to purchase a $\$ 30$ can of paint and $\$ 25$ worth of painting supplies.

Use composition of functions to do the following:

- Find the sale price of your purchase when the $\$ 10$ gift certificate is applied before the 15% discount.

EXAMPLE 6 Solve a multi-step problem

- Find the sale price of your purchase when the 15% discount is applied before the $\$ 10$ gift certificate.

SOLUTION

STEP 1
Find: the total amount of your purchase. The total amount for the paint and painting supplies is
$\$ 30+\$ 25=\$ 55$.
STEP 2
Write: functions for the discounts. Let x be the regular price, $f(x)$ be the price after the $\$ 10$ gift certificate is applied, and $g(x)$ be the price after the 15% discount is applied.

EXAMPLE 6 Solve a multi-step problem
 Function for $\$ 10$ gift certificate: $f(x)=x-10$

Function for 15% discount: $g(x)=x-0.15 x=0.85 x$

STEP 3

Compose: the functions.
The composition $g(f(x))$ represents the sale price when the $\$ 10$ gift certificate is applied before the 15% discount.

$$
g(f(x))=g(x-10)=0.85(x-10)
$$

The composition $f(g(x))$ represents the sale price when the 15% discount is applied before the $\$ 10$ gift certificate.

$$
f(g(x))=f(0.85 x)=0.85 x-10
$$

EXAMPLE 6 Solve a multi-step problem

STEP 4

Evaluate: the functions $g(f(x))$ and $f(g(x))$ when $x=55$.
$g(f(55))=0.85(55-10)=0.85(45)=\$ 38.25$
$f(g(55))=0.85(55)-10=46.75-10$

ANSWER

The sale price is $\$ 38.25$ when the $\$ 10$ gift certificate is applied before the 15% discount. The sale price is $\$ 36.75$ when the 15% discount is applied before the $\$ 10$ gift certificate.

Let $f(x)=3 x-8$ and $g(x)=2 x^{2}$. Find the following.
8. $g(f(5))$

SOLUTION

To evaluate $g(f(5))$, you first must find $f(5)$.

$$
f(5)=3(5)-8=7
$$

Then $g(f(3))=g(7)=2(7)^{2}=2(49)=98$.

ANSWER So, the value of $g(f(5))$ is 98 .

Let $f(x)=3 x-8$ and $g(x)=2 x^{2}$. Find the following.
9. $f(g(5))$

SOLUTION

To evaluate $f(g(5))$, you first must find $g(5)$.

$$
g(5)=2(5)^{2}=2(25)=50
$$

Then $f(g(5))=f(50)=3(50)-8=150-8=142$.

ANSWER So, the value of $f(g(5))$ is 142 .

Let $f(x)=3 x-8$ and $g(x)=2 x^{2}$. Find the following.
10. $f(f(5))$

SOLUTION

To evaluate $f(f(5))$, you first must find $f(5)$.

$$
f(5)=3(5)-8=7
$$

Then $f(f(5))=f(7)=3(7)-8=21-8=13$.

ANSWER So, the value of $f(g(5))$ is 13 .

Let $f(x)=3 x-8$ and $g(x)=2 x^{2}$. Find the following.
11. $g(g(5))$

SOLUTION

To evaluate $g(g(5))$, you first must find $g(5)$.

$$
g(5)=2(5)^{2}=2(25)=50
$$

Then $g(g(5))=g(50)=2(50)^{2}=2(2500)=5000$.

ANSWER So, the value of $g(g(5))$ is 5000 .

GUIDED PRACTICE

12. Let $f(x)=2 x^{-1}$ and $g(x)=2 x+7$. Find $f(g(x)), g(f(x))$, and $f(f(x))$. Then state the domain of each composition.

SOLUTION

$$
\begin{aligned}
& f(g(x))=f(2 x+7)=2(2 x+7)^{-1}=\frac{2}{2 x+7} \\
& g(f(x))=f\left(2 x^{-1}\right)=2\left(2 x^{-1}\right)+7=4 x^{-1}+7=\frac{4}{x}+7 \\
& f(f(x))=f\left(2 x^{-1}\right)=2\left(2 x^{-1}\right)^{-1}=x
\end{aligned}
$$

GUIDED PRACTICE

ANSWER

The domain of $f(g(x))$ consists of all real numbers except $x=-3.5$. The domain of $g(f(x))$ consists of all real numbers except $x=0$.

```
GUIDED PRACTICE for Examples 4, 5, and 6
```

13. What If? In Example 6, how do your answers change if the gift certificate to the paint store is $\$ 15$ and the store discount is 20% ?

- Find the sale price of your purchase when the 15% discount is applied before the $\$ 10$ gift certificate.

EXAMPLE 6 Solve a multi-step problem

SOLUTION

STEP 1

Find: the total amount of your purchase. The total amount for the paint and painting supplies is
$\$ 30+\$ 25=\$ 55$.
STEP 2
Write: functions for the discounts. Let x be the regular price, $f(x)$ be the price after the $\$ 15$ gift certificate is applied, and $g(x)$ be the price after the 20% discount is applied.

EXAMPLE 6 Solve a multi-step problem

Function for $\$ 15$ gift certificate: $f(x)=x-15$
Function for 20\% discount: $g(x)=x-0.2 x=0.8 x$

STEP 3

Compose: the functions.
The composition $g(f(x))$ represents the sale price when the $\$ 15$ gift certificate is applied before the 20% discount.

$$
g(f(x))=g(x-15)=0.8(x-15)
$$

The composition $f(g(x))$ represents the sale price when the 20% discount is applied before the $\$ 15$ gift certificate.

$$
f(g(x))=f(0.8 x)=0.8 x-15
$$

EXAMPLE 6 Solve a multi-step problem

STEP 4

Evaluate: the functions $g(f(x))$ and $f(g(x))$ when $x=55$.
$g(f(55))=0.8(55-15)=0.8(40)=\$ 32$
$f(g(55))=0.8(55)-15=\$ 29$

ANSWER

The sale price is $\$ 32$ when the $\$ 15$ gift certificate is applied before the 20% discount. The sale price is $\$ 29$ when the 20% discount is applied before the $\$ 15$ gift certificate.

