Solve $\sqrt[3]{2 x+7}=3$.

$$
\begin{aligned}
\sqrt[3]{2 x+7} & =3 & & \text { Write original equation. } \\
(\sqrt[3]{2 x+7})^{3} & =3^{3} & & \text { Cube each side to eliminat } \\
2 x+7 & =27 & & \text { Simplify. } \\
2 x & =20 & & \text { Subtract } 7 \text { from each side. } \\
x & =10 & & \text { Divide each side by } 2 .
\end{aligned}
$$

CHECK

Check $x=10$ in the original equation.

$$
\begin{aligned}
\sqrt[3]{2(10)+7} & \stackrel{?}{=} 3 & & \text { Substitute } 10 \text { for } x \\
\sqrt[3]{27} & \stackrel{?}{=} 3 & & \text { Simplify. } \\
3 & =3^{\checkmark} & & \text { Solution checks. }
\end{aligned}
$$

Solve equation. Check your solution.

1. $3 \sqrt{x}-9=-1$

$$
3 \sqrt{x}-9=-1
$$

Write original equation.

$$
\sqrt[3]{x}=8
$$

Add 9 to each side.

$$
(\sqrt[3]{x})^{3}=(8)^{3}
$$

Use each side to eliminate the radical.

$$
x=512
$$

Solve equation. Check your solution.

2. $(\sqrt{x+25})=4$
$(\sqrt{x+25})=4 \quad$ Write original equation.
$(\sqrt{x+25})^{2}=4^{2}$
$x+25=16 \quad$ Simplify.
$x=-9 \quad$ Subtract 25 from each side.

Solve equation. Check your solution.

3. $(2 \sqrt[3]{x-3})=4$

$$
\begin{aligned}
\left(2^{3} \sqrt{x-3}\right)=4 & \text { Write original equation. } \\
\sqrt[3]{x-3}=2 & \text { Divided } 2 \text { from each side. }
\end{aligned}
$$

$(\sqrt[3]{x-3})^{3}=2^{3}$

$$
x-3=8 \quad \text { Simplify. }
$$

$$
x=11 \quad \text { Add } 3 \text { to each side. }
$$

EXAMPLE 2 Solve

EXAMPLE 2) Solve a radical equation given a function

Wind Velocity

In a hurricane, the mean sustained wind velocity v (in meters per second) is given by

$$
v(p)=6.3 \sqrt{1013-p}
$$

where p is the air pressure (in millibars) at the center of the
 hurricane. Estimate the air pressure at the center of a hurricane when the mean sustained wind velocity is 54.5 meters per second.

SOLUTION

$$
\begin{aligned}
v(p) & =6.3 \sqrt{1013-p} \\
54.5 & =6.3 \sqrt{1013-p} \\
8.65 & \simeq \sqrt{1013-p} \\
(8.65)^{2} & \simeq(\sqrt{1013-p})^{2} \\
74.8 & \simeq 1013-p \\
938.2 & \simeq-p \\
-938.2 & \simeq-p
\end{aligned}
$$

Write given function.
Substitute 54.5 for $v(p)$.
Divide each side by 6.3 .
Square each side.
Simplify.
Subtract 1013 from each side.
Divide each side by -1 .

ANSWER

The air pressure at the center of the hurricane is about 938 millibars.

GUIDED PRACTICE

4. What If? Use the function in Example 2 to estimate the air pressure at the center of a hurricane when the mean sustained wind velocity is 48.3 meters per second.

SOLUTION

$$
v(p)=6.3 \sqrt{1013-p} \text { Write given function. }
$$

$48.3=6.3 \sqrt{1013-p} \quad$ Substitute 48.3 for $v(p)$.
$7.67 \simeq \sqrt{1013-p} \quad$ Divide each side by 6.3.
$(7.67)^{2} \simeq(\sqrt{1013-p})^{2} \quad$ Square each side.
$59 \simeq 1013-p$
$-954 \simeq-p$
$954 \simeq p$

Simplify.

Subtract 1013 from each side.

Divide each side by -1 .

ANSWER

The air pressure at the center of the hurricane is about 954 mille bars.

EXAMPLE 3 Standardized Test Practice

What are the solutions of the equation $4 x^{2 / 3}=36$?
(A) ± 3
(B) ± 6
(C) ± 21
(D) ± 27

SOLUTION

$$
\begin{aligned}
4 x^{2 / 3} & =36 \\
x^{2 / 3} & =9 \\
\left(x^{2 / 3}\right)^{3 / 2} & =9^{3 / 2} \\
x & = \pm 27
\end{aligned}
$$

Write original equation.

Divide each side by 4.
Raise each side to the power $\frac{3}{2}$.
Simplify.

ANSWER

(A) (B) (D)

EXAMPLE 4) Solve an Solve $(x+2)^{3 / 4}-1=7$.

$$
\begin{aligned}
(x+2)^{3 / 4}-1 & =7 \\
(x+2)^{3 / 4} & =8 \\
\left((x+2)^{3 / 4}\right)^{4 / 3} & =8^{4 / 3} \\
x+2 & =\left(8^{1 / 3}\right)^{4} \\
x+2 & =2^{4} \\
x+2 & =16 \\
x & =14
\end{aligned}
$$

Write original equation.

Add 1 to each side.
Raise each side to the power $\frac{4}{3}$.
Apply properties of exponents.

Simplify.

Simplify.
Subtract 2 from each side.

Solve an equation with a rational exponent

ANSWER

The solution is 14 . Check this in the original equation.

Solve the equation. Check your solution.

5. $3 x^{3 / 2}=375$
$3 x^{3 / 2}=375 \quad$ Write original equation.
$x^{3 / 2}=125 \quad$ Divide each side by 3.
$\left(x^{3 / 2}\right)^{2 / 3}=(125)^{2 / 3}$ Raise each side to the power $\frac{2}{3}$.

$$
x=25 \quad \text { Simplify }
$$

Solve the equation. Check your solution.

6. $-2 x^{3 / 4}=-16$

$$
\begin{aligned}
-2 x^{3 / 4} & =-16 & & \text { Write original equation. } \\
x^{3 / 4} & =8 & & \text { Divide each side by }-2 . \\
\left(x^{3 / 4}\right)^{4 / 3} & =8^{4 / 3} & & \text { Raise each side to the power } \frac{4}{3} . \\
x & =\left(8^{1 / 3}\right)^{4} & & \text { Apply properties of exponent. } \\
x & =16 & & \text { Simplify. }
\end{aligned}
$$

Solve the equation. Check your solution.

$$
\text { 7. } \begin{array}{rlrl}
-\frac{2}{3} x^{1 / 5} & =-2 & \\
-\frac{2}{3} x^{1 / 5} & =-2 & \text { Write oric } \\
x^{1 / 5} & =3 & & \text { Divide ea } \\
\left(x^{1 / 5}\right)^{5} & =3^{5} & & \text { Raise ea } \\
x & =243 & & \text { Simplify. }
\end{array}
$$

Solve the equation. Check your solution.

$$
\begin{aligned}
\text { 8. } \begin{aligned}
(x+3)^{5 / 2} & =32 & & \\
(x+3)^{5 / 2} & =32 & & \text { Write original equation. } \\
{\left[(x+3)^{5 / 2}\right]^{2 / 5} } & =32^{2 / 5} & & \text { Raise each side to the power } 2 / 5 . \\
x+3 & =\left(32 \cdot \frac{1}{5}\right)^{2} & & \text { Apply properties of exponent. } \\
x+3 & =4 & & \text { Simplify. } \\
x & =1 & & \text { Simplify. }
\end{aligned}
\end{aligned}
$$

GUIDED PRACTICE

Solve the equation. Check your solution.

9. $(x-5)^{4 / 3}=81$

$$
\begin{aligned}
(x-5)^{4 / 3} & =81 \\
{\left[(x-5)^{4 / 3}\right]^{3 / 4} } & =(81)^{3 / 4} \\
x-5 & =\left(81^{1 / 4}\right)^{3} \\
x-5 & = \pm 3^{3} \\
x-5 & = \pm 27
\end{aligned}
$$

$$
x-5=27 \text { or } x-5=27
$$

$$
x=32 \text { or } x=-22
$$

Write original equation.
Raise each side to the power 3/4.
Apply properties of exponent.
Simplify.
Simplify.
Let $(x-5)$ equal 27 and $\mathbf{- 2 7}$.
Subtract 5 from both sides of each equation.

GUIDED PRACTICE

Solve the equation. Check your solution.

10. $(x+2)^{2 / 3}+3=7$
$(x+2)^{2 / 3}+3=7$

$$
(x+2)^{2 / 3}=4
$$

$\left[(x+2)^{2 / 3}\right]^{3 / 2}=4^{3 / 2}$

$$
x+2=\left(4^{1 / 2}\right)^{3}
$$

$x+2=8$ or $x+2=-8$

$$
x=-10 \text { or } 6
$$

Write original equation.

Subtract each side by 3 .
Raise each side to the power 3/2.

Apply properties of exponent.

Simplify.
Simplify.

$$
\begin{array}{rlrl}
\text { Solve } x+1 & =\sqrt{7 x+15 .} & & \\
x+1 & =\sqrt{7 x+15} & & \text { Write original equation. } \\
x+1)^{2} & =(\sqrt{7 x+15})^{2} & & \text { Square each side. } \\
x^{2}+2 x+1 & =7 x+15 & & \begin{array}{l}
\text { Expand left side and simplify } \\
\text { right side. }
\end{array} \\
x^{2}-5 x-14 & =0 & & \text { Write in standard form. } \\
(x-7)(x+2) & =0 & & \text { Factor. } \\
x-7 & =0 \text { or } x+2=0 & \text { Zero-product property } \\
x & =7 \text { or } x=-2 & & \text { Solve for } x .
\end{array}
$$

CHECK 1

Check $x=7$ in the original equation.

$$
\begin{aligned}
x+1 & =\sqrt{7 x+15} \\
7+1 & \stackrel{?}{=} \sqrt{7(7)+15} \\
8 & \stackrel{?}{=} \sqrt{64} \\
8 & =8
\end{aligned}
$$

Check $x=-2$ in the original equation.

$$
\begin{aligned}
x+1 & =\sqrt{7 x+15} \\
-2+1 & \stackrel{?}{=} \sqrt{7(-2)+15} \\
-1 & \stackrel{?}{=} \sqrt{1} \\
-1 & \neq 1
\end{aligned}
$$

ANSWER The only solution is 7.
(The apparent solution 22 is extraneous.)

Solve $\sqrt{x+2}+1=\sqrt{3-x}$.

SOLUTION

METHOD 1 Solve using algebra.

$$
\begin{array}{rlrl}
\sqrt{x+2}+1 & =\sqrt{3-x} & & \text { Write original equation. } \\
(\sqrt{x+2}+1)^{2} & =(\sqrt{3-x})^{2} & & \text { Square each side. } \\
x+2+2 \sqrt{x+2}+1 & =3-x & & \text { Expand left side and simplify } \\
2 \sqrt{x+2} & =-2 x & & \text { right side. } \\
\text { Isolate radical expression. }
\end{array}
$$

EXAMPLE 6 Solve an equation with two radicals

$$
\begin{aligned}
\sqrt{x+2} & =-x \\
(\sqrt{x+2})^{2} & =(-x)^{2} \\
x+2 & =x^{2}
\end{aligned}
$$

$$
0=x^{2}-x-2
$$

$$
0=(x-2)(x+1)
$$

$$
x-2=0 \quad \text { or } \quad x+1=0
$$

$$
x=2 \quad \text { or } \quad x=-1
$$

Divide each side by 2.

Square each side again.

Simplify.

Write in standard form.

Factor.

Zero-product property.

Solve for x.

EXAMPLE 6 Solve an equation with two radicals

Check $x=2$ in the original equation.

$$
\begin{aligned}
& \sqrt{x+2}+1=\sqrt{3-x} \\
& \sqrt{2+2}+1 \stackrel{?}{=} \sqrt{3-2}
\end{aligned}
$$

$$
\sqrt{4}+1 \stackrel{?}{=} \sqrt{1}
$$

$$
3 \neq-1
$$

Check $x=-1$ in the original equation.

$$
\begin{gathered}
\sqrt{x+2}+1=\sqrt{3-x} \\
\sqrt{-1+2}+1 \stackrel{?}{=} \sqrt{3-(-1)}
\end{gathered}
$$

$$
\sqrt{1}+1 \stackrel{?}{=} \sqrt{4}
$$

$$
2=2
$$

ANSWER

The only solution is -1 .
(The apparent solution 2 is extraneous.)

EXAMPLE 6 Solve an equation with two radicals

METHOD 2

Use: a graph to solve the equation. Use a graphing calculator to graph $y_{1}=\sqrt{x+2}+1$ and $y_{2}=\sqrt{3-x}$. Then find the intersection points of the two graphs by using the intersect feature. You will find that the only point of intersection is $(21,2)$. Therefore, 21 is the only solution of the equation

$$
\sqrt{x+2}+1=\sqrt{3-x}
$$

GUIDED PRACTICE

Solve the equation. Check for extraneous solutions

$$
\begin{array}{rlrl}
\text { 11. } x-\frac{1}{2} & =\sqrt{\frac{1}{4} x} & & \\
x-\frac{1}{2} & =\sqrt{\frac{1}{4}} \quad x & \text { Write original equation. } \\
\left(x+\frac{1}{2}\right)^{2} & =\left(\sqrt{\frac{1}{4} x}\right) & \text { Square each side. } \\
x^{2}-x+\frac{1}{4} & =\frac{1}{4} x & & \begin{array}{l}
\text { Expand left side and simplify } \\
\text { right side. }
\end{array} \\
x^{2}-\frac{5}{4} x+\frac{1}{4} & =0 & & \text { Write in standard form. } \\
4 x^{2}-5 x+1 & =0 & & \text { Factor. } \\
(4 x-1)(x-1) & =0 & & \text { (4x)}
\end{array}
$$

$4 x-1=0$ or $x-1=0 \quad$ Zero-product property.
$x=\frac{1}{4} \quad$ or $\quad x=1 \quad$ Solve for x.

Check $x=1$ in the original equation.

$$
\begin{aligned}
x-\frac{1}{2} & =\sqrt{\frac{1}{4} x} \\
1-\frac{1}{2} & \stackrel{?}{=} \sqrt{\frac{1}{4} x} 1 \\
\frac{1}{2} & \stackrel{?}{=} \sqrt{\frac{1}{4}} \\
\frac{1}{2} & =\frac{1}{2}
\end{aligned}
$$

The only solution is 1 (the apparent solution $1 / 4$ is extraneous)

Check $x=\frac{1}{4}$ in the original equation.

$$
\begin{aligned}
& x-\frac{1}{2}=\sqrt{\frac{1}{4} x} \\
& \frac{1}{4}-\frac{1}{2} ? \\
&= \sqrt{\frac{1}{4} x \frac{1}{4}} \\
&-\frac{1}{4} ? \sqrt{\frac{1}{16}} \\
&-\frac{1}{4} \neq \frac{1}{4}
\end{aligned}
$$

GUIDED PRACTICE

Solve the equation. Check for extraneous solutions

$$
\text { 12. } \sqrt{10 x+9}=x+3
$$

$$
\sqrt{10 x+9}=x+3
$$

$$
(\sqrt{10 x+9})^{2} \frac{2}{=}(x+3)^{2}
$$

$$
10 x+9=x^{2}+6 x+9
$$

$$
x^{2}-4 x=0
$$

$$
x(x-4)=0
$$

$$
(x-4)=0 \text { or } x=0 \quad \text { Zero-product property. }
$$

$$
x=4 \text { or } \quad x=0 \quad \text { Solve for } x .
$$

Check $x=4$ in the original equation.

$$
\begin{gathered}
\sqrt{10 x+9}=x+3 \\
\sqrt{10 x 4+9} \stackrel{2}{=} 4+3 \\
\sqrt{40+9} \stackrel{2}{=} 7 \\
\sqrt{49}=7 \\
7=7
\end{gathered}
$$

Check $x=0$ in the original equation.

$$
\begin{gathered}
\sqrt{10 x+9}=x+3 \\
\sqrt{10 x 0+9} \stackrel{?}{=} 0+3 \\
\sqrt{9} \stackrel{?}{=} 3 \\
3=3
\end{gathered}
$$

The solution are 4 and 0 .

GUIDED PRACTICE

Solve the equation. Check for extraneous solutions

13. $\sqrt{2 x+5}=\sqrt{x+7}$

$$
\begin{aligned}
\sqrt{2 x+5} & =\sqrt{x+7} & & \text { Write original equation. } \\
(\sqrt{2 x+5})^{2} & =(\sqrt{x+7})^{2} & & \text { Square each side. } \\
2 x+5 & =x+7 & & \text { Simplify both the sides. } \\
x-2 & =0 & & \text { Simplify. } \\
x & =2 & & \text { Simplify. }
\end{aligned}
$$

Check $x=2$ in the original equation

$\sqrt{2 x+5}=\sqrt{x+7}$
$\sqrt{2.2+5} \stackrel{?}{=} \sqrt{2+7}$
$\sqrt{9} \stackrel{?}{=} \sqrt{9}$

$$
3=3
$$

The solution is 2 .

GUIDED PRACTICE

Solve the equation. Check for extraneous solutions

14. $\sqrt{x+6-2}=\sqrt{x-2}$

Solve

$$
\begin{aligned}
(\sqrt{x+6-2})^{2}=(\sqrt{x-2})^{2} & \text { Square each side. } \\
x+6-4 \sqrt{x+6+4} & =x-2 \\
-4 \sqrt{x+6} & =-12
\end{aligned} \quad \text { Simplify each side. }
$$

$$
\sqrt{x+6}=3
$$

$$
\begin{aligned}
\sqrt{x+6} & =3 & & \text { Divide each side by }-4 . \\
(\sqrt{x+6})^{2} & =3^{2} & & \text { Square each side. } \\
x+6 & =9 & & \text { Simplify. } \\
x & =3 & & \text { Simplify. }
\end{aligned}
$$

Check $x=3$ in the original equation

$$
\begin{aligned}
& \sqrt{x+6}-2=\sqrt{x-2} \\
& \sqrt{3+6}-2 \stackrel{2}{=} \sqrt{3-2} \\
& \sqrt{9}-2 \quad \stackrel{2}{=} \sqrt{1} \\
& 1=1
\end{aligned}
$$

