EXAMPLE 1 Simplify natural base expressions

Simplify the expression.

a. $e^2 \cdot e^5 = e^{2+5}$ $= e^{7}$ **b.** $\frac{12e^4}{3e^3} = 4e^{4-3}$ = 4e c. $(5e^{-3x})^2 = 5^2(e^{-3x})^2$ $= 25e^{-6x}$ $= \frac{25}{e^{6x}}$

EXAMPLE 2 Evaluate natural base expressions

Use a calculator to evaluate the expression.

Interest Functions

Simplify the expression.

1.
$$e^7 \cdot e^4 = e^{7+4}$$

GUIDED PRACTICE

$$= e^{11}$$

2.
$$2e^{-3} \cdot 6e^5 = (2 \cdot 6)e^{-3+5}$$

= $12e^2$

3.
$$\frac{24e^8}{4e^5} = 6 \cdot \frac{e^8}{e^5}$$

= $6e^{8-5}$
= $6e^3$

for Examples 1 and 2

Simplify the expression.

GUIDED PRACTICE

- 4. $(10e^{-4x})^3 = 10^3 (e^{-4x})^3$ = $1000 e^{-12x}$ = $\frac{1000}{e^{12x}}$
- 5. Use a calculator to evaluate $e^{3/4}$.

for Examples 1 and 2

SOLUTION $e^{3/4} = 2.117$

EXAMPLE 3 Graph natural base functions

Graph the function. State the domain and range.

a. $y = 3e^{0.25x}$

SOLUTION

Because a = 3 is positive and r = 0.25 is positive, the function is an exponential growth function. Plot the points (0, 3) and (1, 3.85) and draw the curve.

The domain is all real numbers, and the range is y > 0.

Graph natural base functions

Graph the function. State the domain and range.

b. $y = e^{-0.75(x-2)} + 1$

SOLUTION

EXAMPLE 3

a = 1 is positive and r = -0.75is negative, so the function is an exponential decay function. Translate the graph of $y = e^{-0.75x}$ right 2 units and up 1 unit.

The domain is all real numbers, and the range is y > 1.

Solve a multi-step problem

Biology

EXAMPLE 4

The length *l* (in centimeters) of a tiger shark can be modeled by the function

 $l = 337 - 276 \, e^{-0.178t}$

- where *t* is the shark's age (in years).
- Graph the model.

• Use the graph to estimate the length of a tiger shark that is 3 years old.

Solve a multi-step problem

SOLUTION

EXAMPLE 4

- **STEP 1** Graph the model, as shown.
- **STEP 2** Use the *trace* feature to determine that $l \approx 175$ when t = 3.

The length of a 3year-old tiger shark is about 175 centimeters.

Graph the function. State the domain and range.

6. $y = 2e^{0.5x}$

GUIDED PRACTICE

domain: all real numbers, range: *y*>0

Graph the function. State the domain and range.

7.
$$f(x) = \frac{1}{2} e^{-x} + 1$$

GUIDED PRACTICE

domain: all real numbers, range: *y*>1

Graph the function. State the domain and range.

8. $y = 1.5e^{0.25(x-1)} - 2$

GUIDED PRACTICE

domain: all real numbers, range: y > -2

9. WHAT IF? In Example 4, use the given function to estimate the length of a tiger shark that is 5 years old.

SOLUTION

GUIDED PRACTICE

 $l = 337 - 276 e^{-0.178t}$ where *t* is the shark's age (in years). t = 5 $l = 337 - 276 e^{-0.178 \times 5}$

= 337 - 113.4

= 224cm

ANSWER The length of the tiger shark is 224 cm.

Model continuously compounded interest

Finance

EXAMPLE 5

You deposit \$4000 in an account that pays 6% annual interest compounded continuously. What is the balance after 1 year?

SOLUTION

Use the formula for continuously compounded interest.

- $A = Pe^{rt}$ Write formula.
 - = $4000 e^{0.06(1)}$ Substitute 4000 for *P*, 0.06 for *r*, and 1 for *t*.
 - ≈ 4247.35 Use a calculator.

ANSWER The balance at the end of 1 year is \$4247.35.

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

GUIDED PRACTICE

FINANCE: You deposit \$2500 in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?

a. 2 years

SOLUTION

Use the formula for continuously compounded interest.

 $A = Pe^{rt}$

Write formula.

- = $2500 e^{0.05 \times 2}$ Substitute 2500 for *P*, 0.05 for *r*, and 2 for *t*.
- $= 2500 e^{0.10}$
- $= 2500 \times 1.105$
- ≈ 2762.9

ANSWER The balance at the end of 2 years is \$2762.9.

http://www.classzone.com/cz/books/algebra_2_2011_na/book_home.htm

GUIDED PRACTICE

for Example 5

FINANCE: You deposit \$2500 in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?

b. 5 years

SOLUTION

Use the formula for continuously compounded interest.

 $A = Pe^{rt}$

Write formula.

- = $2500 \times e^{0.05 \times 5}$ Substitute 2500 for *P*, 0.05 for *r* and 5 for *t*.
- $= 2500 \times e^{0.25}$
- $= 2500 \times 1.2840$
- ≈ 3210.06

ANSWER The balance at the end of 5 years is \$3210.06.

GUIDED PRACTICE

FINANCE: You deposit \$2500 in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?

c. 7.5 years

SOLUTION

Use the formula for continuously compounded interest.

 $A = Pe^{rt}$

Write formula.

- $= 2500 \times e^{0.05 \times 7.5}$ **Substitute** 2500 for *P*, 0.05 for *r* and 7.5 for *t*.
- $= 2500 \times e^{0.375}$
- $= 2500 \times 1.459$
- \approx 3637.48

ANSWER The balance at the end of 7.5 year is \$3637.48.

11. FINANCE: Find the amount of interest earned in parts (a) – (c) of Exercise 10.

for Example 5

SOLUTION

GUIDED PRACTICE

a. A = 2500

The balance at the end of 2 years is \$2762.93.

The amount of interest = balance - deposit

$$=$$
 \$2762.93 $-$ \$2500

= \$262.93

11. FINANCE: Find the amount of interest earned in parts (a) – (c) of Exercise 10.

for Example 5

SOLUTION

GUIDED PRACTICE

b. A = 2500

The balance at the end of 5 years is \$3210.06.

The amount of interest = balance - deposit

$$=$$
 \$3210.06 - \$2500

= \$710.06

11. FINANCE: Find the amount of interest earned in parts (a) – (c) of Exercise 10.

for Example 5

SOLUTION

GUIDED PRACTICE

c. A = 2500

The balance at the end of 7.5 years is \$3637.48.

The amount of interest = balance - deposit

$$=$$
 \$3637.48 $-$ \$2500

= \$1137.48