EXAMPLE 1) Simplify natural base expressions

Simplify the expression.

a. $e^{2} \cdot e^{5}=e^{2+5}$

$$
=e^{7}
$$

b. $\frac{12 e^{4}}{3 e^{3}}=4 e^{4-3}$

$$
=4 e
$$

c. $\left(5 e^{-3 x}\right)^{2}=5^{2}\left(e^{-3 x}\right)^{2}$

$$
\begin{aligned}
& =25 e^{-6 x} \\
& =\frac{25}{e^{6 x}}
\end{aligned}
$$

EXAMPLE 2 Evaluate natural base expressions

Use a calculator to evaluate the expression.

Expression Keystrokes

a. e^{4}

2nd $\left[e^{x}\right] 4$ ENTER
Display
54.59815003
b. $e^{-0.09}$
and $\left[e^{x}\right](-) 0.09$ ENTER 0.9139311853

GUIDED PRACTICE

Simplify the expression.

1. $e^{7} \cdot e^{4}=e^{7+4}$

$$
=e^{11}
$$

2. $2 e^{-3} \cdot 6 e^{5}=(2 \cdot 6) e^{-3+5}$

$$
=12 e^{2}
$$

3. $\frac{24 e^{8}}{4 e^{5}}=6 \cdot \frac{e^{8}}{e^{5}}$

$$
\begin{aligned}
& =6 e^{8-5} \\
& =6 e^{3}
\end{aligned}
$$

Simplify the expression.

4. $\left(10 e^{-4 x}\right)^{3}=10^{3}\left(e^{-4 x}\right)^{3}$

$$
\begin{aligned}
& =1000 e^{-12 x} \\
& =\frac{1000}{e^{12 x}}
\end{aligned}
$$

5. Use a calculator to evaluate $e^{3 / 4}$.

$$
e^{3 / 4}=2.117
$$

EXAMPLE 3 Graph natural base functions

Graph the function. State the domain and range.
a. $y=3 e^{0.25 x}$

SOLUTION

Because $a=3$ is positive and $r=0.25$ is positive, the
function is an exponential growth function. Plot the points $(0,3)$ and $(1,3.85)$ and draw the curve.

The domain is all real numbers, and the range is $y>0$.

EXAMPLE 3) Graph natural base functions

Graph the function. State the domain and range.
b. $y=e^{-0.75(x-2)}+1$

SOLUTION

$a=1$ is positive and $r=-0.75$
is negative, so the function is an exponential decay function. Translate the graph of $y=e^{-0.75 x}$ right 2 units and up 1 unit.

The domain is all real numbers, and the range is $y>1$.

EXAMPLE 4) Solve a multi-step problem

Biology

The length l (in centimeters) of a tiger shark can be modeled by the function

$$
l=337-276 e^{-0.178 t}
$$

where t is the shark's age (in years).

- Graph the model.
- Use the graph to estimate the length of a tiger shark that is 3 years old.

EXAMPLE 4 Solve a multi-step problem

SOLUTION

STEP 1 Graph the model, as shown.
STEP 2 Use the trace feature to determine that $l \approx 175$ when $t=3$.

ANSWER
The length of a 3year-old tiger shark is about 175 centimeters.

Graph the function. State the domain and range.

6. $y=2 e^{0.5 x}$

domain: all real numbers, range: $y>0$

Graph the function. State the domain and range.

7. $f(x)=\frac{1}{2} e^{-x}+1$

domain: all real numbers, range: $y>1$

Graph the function. State the domain and range.

8. $y=1.5 e^{0.25(\mathrm{x}-1)}-2$

domain: all real numbers, range: $y>-2$

GUIDED PRACTICE

9. WHAT IF? In Example 4, use the given function to estimate the length of a tiger shark that is 5 years old.

SOLUTION

$l=337-276 e^{-0.178 t}$
where t is the shark's age (in years).

$$
\begin{aligned}
t & =5 \\
l & =337-276 e^{-0.178 \times 5} \\
& =337-113.4 \\
& =224 \mathrm{~cm}
\end{aligned}
$$

ANSWER The length of the tiger shark is 224 cm .

Finance

You deposit $\$ 4000$ in an account that pays 6% annual interest compounded continuously. What is the balance after 1 year?

SOLUTION

Use the formula for continuously compounded interest.

$$
\begin{aligned}
A & =P e^{r t} & & \text { Write formula. } \\
& =4000 e^{0.06(1)} & & \text { Substitute } 4000 \text { for } P, 0.06 \text { for } r, \text { and } 1 \text { for } t . \\
& \approx 4247.35 & & \text { Use a calculator. }
\end{aligned}
$$

ANSWER The balance at the end of 1 year is $\$ 4247.35$.

GUIDED PRACTICE

FINANCE: You deposit $\$ 2500$ in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?
a. 2 years

SOLUTION

Use the formula for continuously compounded interest.

$$
\begin{aligned}
A & =P e^{r t} \\
& =2500 e^{0.05 \times 2} \\
& =2500 e^{0.10} \\
& =2500 \times 1.105 \\
& \approx 2762.9
\end{aligned}
$$

ANSWER The balance at the end of 2 years is $\$ 2762.9$.

GUIDED PRACTICE

FINANCE: You deposit $\$ 2500$ in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?
b. 5 years

SOLUTION

Use the formula for continuously compounded interest.

$$
\begin{aligned}
A & =P e^{r t} \\
& =2500 \times e^{0.05 \times 5} \\
& =2500 \times e^{0.25} \\
& =2500 \times 1.2840 \\
& \approx 3210.06
\end{aligned}
$$

ANSWER The balance at the end of 5 years is $\$ 3210.06$.

GUIDED PRACTICE

FINANCE: You deposit $\$ 2500$ in an account that pays 5% annual interest compounded continuously. Find the balance after each amount of time?
c. 7.5 years

SOLUTION

Use the formula for continuously compounded interest.

$$
\begin{aligned}
A & =P e^{r t} \\
& =2500 \times e^{0.05 \times 7.5} \\
& =2500 \times e^{0.375} \\
& =2500 \times 1.459 \\
& \approx 3637.48
\end{aligned}
$$

ANSWER The balance at the end of 7.5 year is $\$ 3637.48$.

GUIDED PRACTICE for Example 5

11. FINANCE: Find the amount of interest earned in parts (a) - (c) of Exercise 10.

SOLUTION

a. $A=2500$

The balance at the end of 2 years is $\$ 2762.93$.
The amount of interest = balance - deposit

$$
\begin{aligned}
& =\$ 2762.93-\$ 2500 \\
& =\$ 262.93
\end{aligned}
$$

GUIDED PRACTICE for Example 5

11. FINANCE: Find the amount of interest earned in parts (a) - (c) of Exercise 10.

SOLUTION

b. $\quad A=2500$

The balance at the end of 5 years is $\$ 3210.06$.
The amount of interest = balance - deposit

$$
\begin{aligned}
& =\$ 3210.06-\$ 2500 \\
& =\$ 710.06
\end{aligned}
$$

GUIDED PRACTICE for Example 5

11. FINANCE: Find the amount of interest earned in parts (a) - (c) of Exercise 10.

SOLUTION

c. $A=2500$

The balance at the end of 7.5 years is $\$ 3637.48$.
The amount of interest = balance - deposit

$$
\begin{aligned}
& =\$ 3637.48-\$ 2500 \\
& =\$ 1137.48
\end{aligned}
$$

