

EXAMPLE 1) Rewrite logarithmic equations

Logarithmic Form

Exponential Form

a.
$$\log_2 8 = 3$$

$$2^3 = 8$$

b.
$$\log_4 1 = 0$$

$$4^0 = 1$$

$$\mathbf{c.} \quad \log_{12} 12 = 1$$

$$12^1 = 12$$

d.
$$\log_{1/4} 4 = -1$$

$$\left(\frac{1}{4}\right)^{-1} = 4$$

Rewrite the equation in exponential form.

Logarithmic Form

1.
$$\log_3 81 = 4$$

2.
$$\log_7 7 = 1$$

3.
$$\log_{14} 1 = 0$$

4.
$$\log_{1/2} 32 = -5$$

Exponential Form

$$3^4 = 81$$

$$7^1 = 7$$

$$14^0 = 1$$

$$\left(\frac{1}{2}\right)^{-5} = 32$$

Evaluate logarithms

Evaluate the logarithm.

a. $\log_4 64$

SOLUTION

To help you find the value of $log_b y$, ask yourself what power of b gives you y.

- a. 4 to what power gives 64?
- $4^3 = 64$, so $\log_4 64 = 3$.

- **b.** $\log_5 0.2$
- **b.** 5 to what power gives 0.2? $5^{-1} = -0.2$, so $\log_5 0.2 = -1$.

Evaluate logarithms

Evaluate the logarithm.

c. $\log_{1/5} 125$

SOLUTION

To help you find the value of $log_b y$, ask yourself what power of b gives you y.

- c. $\frac{1}{5}$ to what power gives 125? $(\frac{1}{5})^{-3} = 125$, so $\log_{1/5} 125 = -3$.
- **d.** $\log_{36} 6$
- d. 36 to what power gives 6? $36^{1/2} = 6$, so $\log_{36} 6 = \frac{1}{2}$.

Evaluate common and natural logarithms Evaluate and Graph Logarithms

Expression Keystrokes

Display

Check

a. log 8

ENTER

0.903089987

 $10^{0.903} \approx 8$ <

b. In 0.3

.3

 $-1.203972804 e^{-1.204} \approx 0.3$

Evaluate a logarithmic model

Tornadoes

The wind speed s (in miles per hour) near the center of a tornado can be modeled by

$$s = 93 \log d + 65$$

where d is the distance (in miles) that the tornado travels. In 1925, a tornado traveled 220 miles through three states. Estimate the wind speed near the tornado's center.

Not drawn to scale

Evaluate a logarithmic model

SOLUTION

$$s = 93 \log d + 65$$

$$= 93 \log 220 + 65$$

$$\approx 93(2.342) + 65$$

$$= 282.806$$

Write function.

Substitute 220 for d.

Use a calculator.

Simplify.

ANSWER

The wind speed near the tornado's center was about 283 miles per hour.

for Examples 2, 3 and 4

Evaluate the logarithm. Use a calculator if necessary.

5. $\log_2 32$

SOLUTION

2 to what power gives 32?

$$2^5 = 32$$
, so $\log_2 32 = 5$.

6. $\log_{27} 3$

SOLUTION

27 to what power gives 3?

$$27^{1/3} = 3$$
, so $\log_{27} 3 = \frac{1}{3}$.

GUIDED PRACTICE

for Examples 2, 3 and 4

Evaluate the logarithm. Use a calculator if necessary.

Expression Keystrokes Display Check

7. $\log 12$ $\log 12$

8. In 0.75 IN .75 DENTER -0.288 $e^{-0.288} \approx 0.75$

for Examples 2, 3 and 4

9. WHAT IF? Use the function in Example 4 to estimate the wind speed near a tornado's center if its path is 150 miles long.

SOLUTION

$$s = 93 \log d + 65$$

$$= 93 \log 150 + 65$$

$$\approx 93(2.1760) + 65$$

$$= 267$$

Write function.

Substitute 150 for d.

Use a calculator.

Simplify.

ANSWER

The wind speed near the tornado's center is about 267 miles per hour.

Use inverse properties

Simplify the expression.

a. $10^{\log 4}$

b. $\log_5 25^x$

SOLUTION

a.
$$10^{\log 4} = 4$$

$$b^{\log_b x} = x$$

b.
$$\log_5 25^x = \log_5 (5^2)^x$$

= $\log_5 5^{2x}$
= $2x$

Express 25 as a power with base 5.

Power of a power property

$$\log_b b^x = x$$

Find inverse functions

Find the inverse of the function.

a.
$$y = 6^x$$

b.
$$y = \ln (x + 3)$$

SOLUTION

a. From the definition of logarithm, the inverse of $y = 6^x$ is $y = \log_6 x$.

b.
$$y = \ln (x + 3)$$

 $x = \ln (y + 3)$

$$e^x = (y + 3)$$

$$e^x - 3 = y$$

Write original function.

Switch x and y.

Write in exponential form.

Solve for *y***.**

ANSWER

The inverse of $y = \ln (x + 3)$ is $y = e^x - 3$.

Simplify the expression.

10. $8^{\log_8 x}$

SOLUTION

$$8^{\log_8 x} = x$$

$$b^{\log_b b} = x$$

11. $\log_7 7^{-3x}$

SOLUTION

$$\log_7 7^{-3x} = -3x$$

$$\log_a a^x = x$$

Simplify the expression.

12. $\log_2 64^x$

SOLUTION

$$\log_2 64^x = \log_2 (2^6)^x$$
$$= \log_2 2^{6x}$$
$$= 6x$$

Express 64 as a power with base 2.

Power of a power property

$$\log_b b^x = x$$

13. e^{ln20}

SOLUTION

$$e^{\ln 20} = e^{\log_e 20} = 20$$

$$e^{\log_e x} = x$$

14. Find the inverse of $y = 4^x$

SOLUTION

From the definition of logarithm, the inverse of y = 6 is $y = \log_4 x$.

15. Find the inverse of $y = \ln (x-5)$.

SOLUTION

$$y = \ln (x - 5)$$

$$x = \ln (y - 5)$$

$$e^x = (y-5)$$

$$e^x + 5 = y$$

Write original function.

Switch *x* and *y*.

Write in exponential form.

Solve for y.

ANSWER

The inverse of $y = \ln (x-5)$ is $y = e^x + 5$.

Graph logarithmic functions

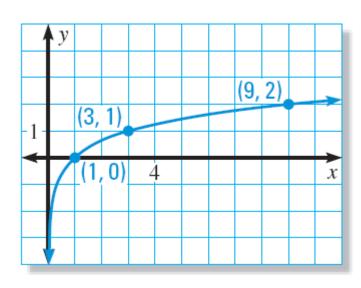
Graph the function.

$$\mathbf{a.} \quad y = \log_3 x$$

SOLUTION

Plot several convenient points, such as (1, 0), (3, 1), and (9, 2). The *y*-axis is a vertical asymptote.

From *left* to *right*, draw a curve that starts just to the right of the y-axis and moves up through the plotted points, as shown below.



Graph logarithmic functions

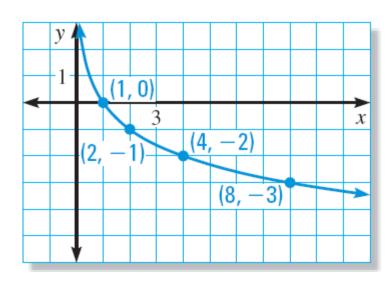
Graph the function.

b.
$$y = \log_{1/2} x$$

SOLUTION

Plot several convenient points, such as (1, 0), (2, -1), (4, -2), and (8, -3). The *y*-axis is a vertical asymptote.

From *left* to *right*, draw a curve that starts just to the right of the *y*-axis and moves down through the plotted points, as shown below.

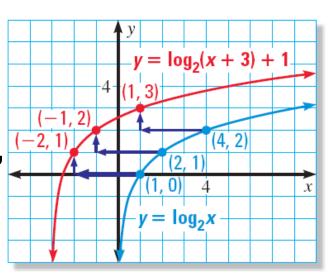


Translate a logarithmic graph

Graph $y = \log_2(x+3) + 1$. State the domain and range.

SOLUTION

STEP 1 Sketch the graph of the parent function $y = \log_2 x$, which passes through (1, 0), (2, 1), and (4, 2).



STEP 2 Translate the parent graph left 3 units and up 1 unit. The translated graph passes through (-2, 1), (-1, 2), and (1, 3). The graph's asymptote is x = -3. The domain is x > -3, and the range is all real numbers.

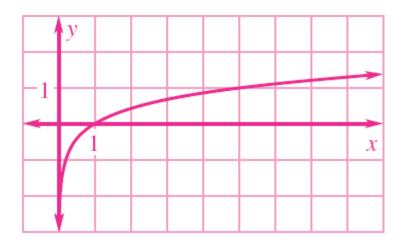
Graph the function. State the domain and range.

16.
$$y = \log_5 x$$

SOLUTION

If
$$x = 1$$
 $y = 0$,
 $x = 5$ $y = 1$,
 $x = 10$ $y = 2$

Plot several convenient points, such as (1, 0), (5, 1), and (10, 2). The *y*-axis is a vertical asymptote.



From *left* to *right*, draw a curve that starts just to the right of the *y*-axis and moves up through the plotted points.

The domain is x > 0, and the range is all real numbers.

Graph the function. State the domain and range.

17.
$$y = \log_{1/3}(x-3)$$

SOLUTION

domain: x > 3,

range: all real numbers

Graph the function. State the domain and range.

18.
$$y = \log_4(x+1) - 2$$

SOLUTION

domain: x > 21,

range: all real numbers

