Solve $4^{x}=\left(\frac{1}{2}\right)^{x-3}$

SOLUTION

$$
\begin{aligned}
4^{x} & =\left(\frac{1}{2}\right)^{x-3} \\
\left(2^{2}\right)^{x} & =\left(2^{-1}\right)^{x-3} \\
2^{2 x} & =2^{-x+3} \\
2 x & =-x+3 \\
x & =1
\end{aligned}
$$

Write original equation.
Rewrite 4 and $\frac{1}{2}$ as powers with base 2.

Power of a power property

Property of equality for exponential equations Solve for x.

ANSWER The solution is 1 .

EXAMPLE 1 Solve by equating exponents

Check: Check the solution by substituting it into the original equation.

$$
4^{1} \stackrel{?}{=}\left(\frac{1}{2}\right)^{1-3}
$$

$$
4 \stackrel{?}{=}\left(\frac{1}{2}\right)^{-2}
$$

Simplify.

$$
4=4
$$

Solution checks.

Solve the equation.

1. $9^{2 x}=27^{x-1}$

$$
9^{2 x}=27
$$

Write original equation.

Rewrite 9and 27 as powers with base 3.

Power of a power property

Property of equality for exponential equations

$$
4 x-3 x=-3
$$

Property of equality for exponential equations

$=-3$
Solve for x.

ANSWER The solution is -3 .

Solve the equation.

2. $100^{7 x+1}=1000^{3 x-2}$

SOLUTION

$$
100^{7 x+1}=1000^{3 x-2}
$$

$$
\left(10^{2}\right)^{7 x+1}=\left(10^{3}\right)^{3 x-2}
$$

$$
(10)^{14 x+2}=(10)^{9 x-6}
$$

$$
14 x+2=9 x-6
$$

Write original equation.

Rewrite 100and 1000 as powers with base 10 .

Power of a power property
Property of equality for exponential equations

$$
14 x-9 x=-6-2
$$

Property of equality for exponential equations

$$
5 x=-8
$$

Property of equality for exponential equations

$$
x=\frac{-8}{5}
$$

Solve for x.

ANSWER The solution is $\frac{-8}{5}$.

Solve the equation.

3. $81^{3-x}=\left(\frac{1}{3}\right)^{5 x-6}$

SOLUTION

$$
\begin{aligned}
81^{3-x} & =\left(\frac{1}{3}\right)^{5 x-6} \\
\left(3^{4}\right)^{3-x} & =\left(3^{-1}\right)^{5 x-6} \\
3^{12-4 x} & =3^{-5 x+6} \\
12-4 x & =-5 x+6
\end{aligned}
$$

Write original equation.

Rewrite 81 and $1 / 3$ as powers with base 3 .

Power of a power property

Property of equality for exponential equations

$$
-4 x+5 x=6-12
$$

$$
x=-6
$$

Solve for x.

EXAMPLE 2 Take a logarithm of each side

Solve $4^{x}=11$.

SOLUTION

$$
\begin{aligned}
4^{x} & =11 & & \text { Write original equation. } \\
\log _{4} 4^{x} & =\log _{4} 11 & & \text { Take } \log _{4} \text { of each side. } \\
x & =\log _{4} 11 & & \log _{b} b^{x}=x \\
x & =\frac{\log 11}{\log 4} & & \text { Change-of-base formula } \\
x & \approx 1.73 & & \text { Use a calculator. }
\end{aligned}
$$ the original equation.

EXAMPLE 3 Use an exponential model

Cars You are driving on a hot day when your car overheats and stops running. It overheats at $280^{\circ} \mathrm{F}$ and can be driven again at $230^{\circ} \mathrm{F}$. If $r=0.0048$ and it is $80^{\circ} \mathrm{F}$ outside, how long (in minutes) do you have to wait until you can continue driving?

EXAMPLE 3 Use an exponential model

SOLUTION

$$
\begin{aligned}
T & =\left(T_{0}-T_{R}\right) e^{-r t}+T_{R} & & \text { Newton's law of cooling } \\
230 & =(280-80) e^{-0.0048 t}+80 & & \text { Substitute for } T, T_{0}, T_{R} \text { and } r_{.} \\
150 & =200 e^{-0.0048 t} & & \text { Subtract } 80 \text { from each side. } \\
0.75 & =e^{-0.0048 t} & & \text { Divide each side by } 200 . \\
\ln 0.75 & =\ln e^{-0.0048 t} & & \text { Take natural log of each side. } \\
-0.2877 & \approx-0.0048 t & & \text { In } e^{x}=\log _{e} e^{x}=x \\
60 & \approx t & & \text { Divide each side by }-0.0048 .
\end{aligned}
$$

ANSWER

You have to wait about 60 minutes until you can continue driving.

GUIDED PRACTICE

Solve the equation.

4. $2^{x}=5$

SOLUTION

$$
\begin{aligned}
2^{x} & =5 \\
\log _{2} 2^{x} & =\log _{2} 5 \\
x & =\log _{2} 5 \\
x & =\frac{\log 5}{\log 2} \\
x & \approx 2.32
\end{aligned}
$$

Write original equation.

Take $\log _{2}$ of each side.
$\log _{b} b^{x}=x$
Change-of-base formula

Use a calculator.

ANSWER The solution is about 2.32. Check this in the original equation.

Solve the equation.

5. $7^{9 x}=15$

SOLUTION

$$
\begin{aligned}
7^{9 x} & =15 \\
\log _{7} 7^{9 x} & =\log _{7} 15 \\
9 x & =\log _{7} 15 \\
9 x & =\frac{\log 15}{\log 7} \\
x & \approx 0.155
\end{aligned}
$$

Write original equation.

Take $\log _{7}$ of each side.
$\log _{b} b^{x}=x$

Change-of-base formula

Use a calculator.

ANSWER The solution is about 0.155 . Check this in the original equation.

GUIDED PRACTICE

Solve the equation.

6. $4 e^{-0.3 x}-7=13$

SOLUTION

$$
\begin{aligned}
4 e^{-0.3 x}-7 & =13 \\
4 e^{-0.3 x} & =13+7 \\
4 e^{-0.3 x} & =20 \\
e^{-0.3 x} & =\frac{20}{4}=5
\end{aligned}
$$

$\log _{e} e^{-0.3 x}=\log _{e} 5$

$$
\begin{array}{rlrl}
-0.3 x & =\operatorname{In} 5 & \operatorname{In} e^{x}=\log _{e} e^{x}=x \\
-0.3 x & =1.6094 & \text { Divide each side by }-0.3 x . \\
x=\frac{-1.6094}{0.3}=-5.365 &
\end{array}
$$

ANSWER The solution is about 5.365. Check this in the original equation.

EXAMPLE 4 Solve a logarithmic equation

Solve $\log _{5}(4 x-7)=\log _{5}(x+5)$.

SOLUTION

$\log _{5}(4 x-7)=\log _{5}(x+5)$. Write original equation.

$$
\begin{aligned}
4 x-7 & =x+5 \\
3 x-7 & =5 \\
3 x & =12 \\
x & =4
\end{aligned}
$$

Property of equality for logarithmic equations

Subtract x from each side.
Add 7 to each side.
Divide each side by 3 .

ANSWER The solution is 4.

Check: Check the solution by substituting it into the original equation.

$$
\begin{aligned}
\log _{5}(4 x-7) & =\log _{5}(x-5) & & \text { Write original equation. } \\
\log _{5}(4 \cdot 4-7) & \stackrel{?}{=} \log _{5}(4+5) & & \text { Substitute } 4 \text { for } x . \\
\log _{5} 9 & =\log _{5} 9 \quad \checkmark & & \text { Solution checks. }
\end{aligned}
$$

독 5 - Solving Logarithmic and Exponential Equations

EXAMPLE 5 Exponentiate each side of an equation
Solve $\log _{4}(5 x-1)=3$

SOLUTION

$$
\begin{aligned}
\log _{4}(5 x-1) & =3 \\
4^{\log _{4}(5 x-1)} & =4^{3} \\
5 x-1 & =64 \\
5 x & =65 \\
x & =13
\end{aligned}
$$

Write original equation.
Exponentiate each side using base 4.
$b^{\boldsymbol{\operatorname { l o g }}_{b} x}=x$
Add 1 to each side.
Divide each side by 5 .

ANSWER The solution is 13 .

Check: $\log _{4}(5 x-1)=\log _{4}(5 \cdot 13-1)=\log _{4} 64$
Because $4^{3}=64, \log _{4} 64=3 . ~ . ~$

EXAMPLE 6 Standardized Test Practice

What is (are) the solution(s) of $\log 2 x+\log (x-5)=2$?
(A) $-5,10$
(B) 5
(C) 10
(D) 5,10

SOLUTION

$$
\begin{aligned}
\log 2 x+\log (x-5) & =2 \\
\log [2 x(x-5)] & =2 \\
10^{\log [2 x(x-5)]} & =10^{2}
\end{aligned}
$$

Write original equation.
Product property of logarithms
Exponentiate each side using base 10.

$$
2 x(x-5)=100 \quad \text { Distributive property }
$$

$$
\begin{array}{rlrl}
2 x^{2}-10 x & =100 & & b^{\log _{b} x}=x \\
2 x^{2}-10 x-100 & =0 & & \text { Write in standard form. } \\
x^{2}-5 x-50 & =0 & \text { Divide each side by } 2 . \\
(x-10)(x+5) & =0 & \text { Factor. } \\
x=10 \text { or } x & =-5 & \text { Zero product property }
\end{array}
$$

Check: Check the apparent solutions 10 and - 5 using algebra or a graph.

Algebra: Substitute 10 and 25 for x in the original equation.

EXAMPLE 6 Standardized Test Practice

$$
\log 2 x+\log (x-5)=2
$$

$$
\log (2 \cdot 10)+\log (10-5)=2
$$

$$
\log 20+\log 5=2
$$

$$
\log 100=2
$$ $2=2 \checkmark$ solution.

Because $\log (-10)$ is not

$$
\log 2 x+\log (x-5)=2
$$

$$
\log [2(-5)]+\log (-5-5)=2
$$

$$
\log (-10)+\log (-10)=2
$$ defined, -5 is not a

So, 10 is a solution.

EXAMPLE 6 Standardized Test Practice

Graph: Graph $y=\log 2 x+\log (x-5)$ and $y=2$ in the same coordinate plane. The graphs intersect only once, when $x=10$. So, 10 is the only solution.

ANSWER

The correct answer is \mathbf{C}.

(D)

GUIDED PRACTICE

Solve the equation. Check for extraneous solutions.

7. $\ln (7 x-4)=\ln (2 x+11)$

SOLUTION

$$
\begin{aligned}
\ln (7 x-4) & =\ln (2 x+11) & & \text { Write original equation. } \\
7 x-4 & =2 x+11 & & \text { Property of equality for } \\
7 x-2 x & =11-4 & & \\
5 x & =15 & & \\
x & =3 & & \text { Divarithmic equations each side by } 5 .
\end{aligned}
$$

ANSWER The solution is 3 .

Solve the equation. Check for extraneous solutions.

8. $\log _{2}(x-6)=5$

SOLUTION

$$
\begin{aligned}
\log _{2}(x-6) & =5 \\
2 \log _{2}(x-6) & =2^{5} \\
x-6 & =32 \\
x & =32+6 \\
x & =38
\end{aligned}
$$

Write original equation.
Exponentiate each side using base 2.
$b^{\log _{b} x}=x$
Add 6 to each side.

ANSWER The solution is 38 .

Solve the equation. Check for extraneous solutions.

9. $\log 5 x+\log (x-1)=2$

SOLUTION

$\log 5 x+\log (x-5)=2$

$$
\begin{aligned}
\log [5 x(x-1)] & =2 \\
10^{\log [5 x(x-1)]} & =10^{2}
\end{aligned}
$$

$$
5 x(x-1)=100
$$

Write original equation.

Product property of logarithms

Exponentiate each side using base 10.

Distributive property

$$
\begin{aligned}
x^{2}-x & =\frac{100}{5} \quad b^{\log _{b} x}=x \\
x^{2}-x & =20 \\
x^{2}-x-20 & =0 \\
x^{2}-5 x+4 x-20 & =0 \\
x(x-5)+4(x-5) & =0
\end{aligned}
$$

$$
\begin{aligned}
(x-5)(x+4) & =0 \\
x=5 \text { or } x & =-4
\end{aligned}
$$

Factor.
Zero product property

Check: Check the apparent solutions 5 and - 4 using algebra or a graph.

GUIDED PRACTICE

Algebra: Substitute -4 and 5 for x in the original equation.

$\log 5 x+\log (x-1)=2$	$\log 5 x+\log (5 x-1)=2$
$\log 5(-4)+\log (-4-1)=2$	$\log [5(5)]+\log (5(5)-1)=2$
$\log -20+\log -5=2$	$\log 25+\log 24=2$
$\log 100=2$	$\log 600=2$
$2=2 \checkmark$	$2.778 \neq 2$

ANSWER So,- 4 is a solution.

Solve the equation. Check for extraneous solutions.

10. $\log _{4}(x+12)+\log _{4} x=3$

SOLUTION

$$
\log _{4}(x+12)+\log _{4} x=3
$$

$$
\begin{aligned}
\log _{4}[(x+12) \cdot x] & =3 \\
\log _{4}\left(x^{2}+12 x\right) & =3 \\
4 \log _{4}\left(x^{2}+12 x\right) & =4^{3} \\
x^{2}+12 x & =4^{3}
\end{aligned}
$$

Exponentiate each side using base 4.

$$
\begin{aligned}
x^{2}+12 x & =64 \\
x^{2}+12 x-64 & =0 \\
x^{2}+16 x-4 x-64 & =0 \\
x(x+4)-4(x+4) & =0 \\
(x-4)(x+4) & =0 \\
x=4 \text { or } x & =-4
\end{aligned}
$$

Factor.
Zero product property

Check: Check the apparent solutions 4and - 4 using algebra or a graph.

GUIDED PRACTICE

Algebra: Substitute 4 and -4 for x in the original equation.

$\log _{4}(4+12)+\log _{4} 4=3$
$\log _{4} 16+\log _{4} 4=3$
$\log _{4} 16+1=3$
$\log _{4} 16=2$
$\frac{\log 16}{\log 4}=2$
$\frac{1.204}{0.6020}=2$

$$
\begin{aligned}
\log _{4}(-4+12)+\log _{4} 4 & =3 \\
\log _{4} 8+\log _{4}-4 & =3 \\
\log _{4} 8-1 & =3 \\
\log _{4} 8 & =4 \\
\frac{\log _{8}}{\log 4} & =4 \\
\frac{1.9030}{0.6020} & \neq 4
\end{aligned}
$$

ANSWER So, 4 is a solution.

Astronomy The apparent magnitude of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude M of the dimmest star that can be seen with a telescope is given by the function

$$
M=5 \log D+2
$$

where D is the diameter (in millimeters) of the telescope's objective lens. If a telescope can reveal stars with a magnitude of 12 , what is the diameter of its objective lens?

SOLUTION

$$
\begin{aligned}
M & =5 \log D+2 \\
12 & =5 \log D+2 \\
10 & =5 \log D \\
2 & =\log D \\
10^{2} & =10^{\log D} \\
100 & =D
\end{aligned}
$$

Write original equation.
Substitute 12 for M.
Subtract 2 from each side.
Divide each side by 5 .
Exponentiate each side using base 10.

Simplify.

ANSWER The diameter is 100 millimeters.

GUIDED PRACTICE for Example 7

11. WHAT IF? Use the information from Example 7 to find the diameter of the objective lens of a telescope that can reveal stars with a magnitude of 7 .

SOLUTION

$$
\begin{aligned}
& M=5 \log D+2 \\
& 7=5 \log D+2 \\
& 5=5 \log D \\
& 1=\log D \\
& 10^{1}=10^{\log D} \\
& 10=D
\end{aligned}
$$

Write original equation.
Substitute 12 for M.
Subtract 2 from each side.
Divide each side by 5 .

Simplify.
ANSWER The diameter is 10 millimeters.

