Solving Rational Expressions Solve a rational equation by cross multiplying

Solve:
$$\frac{3}{x+1} = \frac{9}{4x+1}$$

 $\frac{3}{x+1} = \frac{9}{4x+1}$
 $3(4x+5) = 9(x+1)$
 $12x+15 = 9x+9$
 $3x+15 = 9$
 $3x = -6$
 $x = -2$
ANSWER

EXAMPLE 1

Write original equation.
Cross multiply.
Distributive property
Subtract 9x from each side.
Subtract 15 from each side.
Divide each side by 3.

The solution is -2. Check this in the original equation.

Write and use a rational model

ALLOYS

EXAMPLE 2

An *alloy* is formed by mixing two or more metals. Sterling silver is an alloy composed of 92.5% silver and 7.5% copper by weight. Jewelry silver is composed of 80% silver and 20% copper by weight. How much pure silver should you mix with 15 ounces of jewelry silver to make sterling silver?

SOLUTION

Percent of copper in mixture = Weight of copper in mixture Total weight of mixture

Write and use a rational model

EXAMPLE 2

$\frac{7.5}{100} = \frac{0.2(15)}{15+x}$	<i>x</i> is the amount of silver added.
7.5(15 + x) = 100(0.2)(15)	Cross multiply.
112.5 + 7.5x = 300	Simplify.
7.5x = 187.5	Subtract 112.5 from each side.
<i>x</i> = 25	Divide each side by 7.5.
ANSWER	

You should mix 25 ounces of pure silver with the jewelry silver.

GUIDED PRACTICE

for Examples 1 and 2

$$1. \frac{3}{5x} = \frac{2}{x-7}$$
SOLUTION

AN

$$\frac{3}{5x} = \frac{2}{x-7}$$

$$3(x-7) = 2(5x)$$

$$3x - 21 = 10x$$

$$-7x - 21 = 0$$

$$-7x = 21$$

$$x = -3$$
SWER

Write original equation.
Cross multiply.
Distributive property
Subtract 10x from each side.
Subtract 21 from each side.
Divide each side by 7.

The solution is -3. Check this in the original equation

GUIDED PRACTICE

for Examples 1 and 2

2.
$$\frac{-4}{x+3} = \frac{5}{x-3}$$

SOLUTION
 $\frac{-4}{x+3} = \frac{5}{x-3}$
 $-4(x-3) = 5(x+3)$
 $-4x + 12 = 5x + 15$
 $-9x + 12 = 15$
 $-9x = 3$
 $x = \frac{-1}{3}$
ANSWER

Write original equation.
Cross multiply.
Distributive property
Subtract 5x from each side.
Subtract 12 from each side.
Divide each side by 9.

The solution is $\frac{-1}{3}$. Check this in the original equation

GUIDED PRACTICE

for Examples 1 and 2

3.
$$\frac{1}{2x+5} = \frac{x}{11x+8}$$

SOLUTION

$$\frac{1}{2x+5} = \frac{x}{11x+8}$$
Write original equation.

$$1(11x+8) = x(2x+5)$$
Cross multiply.

$$11x+8 = 2x^2+5x$$
Distributive property

$$2x^2-6x^2+8 = 0$$
Subtract $2x^2$, and 5 from each side.

$$x^2-3x^2+4=0$$

$$(x-4)(x+1) = 0$$

for Examples 1 and 2

$$x = 4, x = -1$$

ANSWER $x = 4, x = -1$

4. What If? In Example 2, suppose you have 10 ounces of jewelry silver. How much pure silver must be mixed with the jewelry silver to make sterling silver?

SOLUTION

Percent of copper in mixture

Weight of copper in mixture

Total weight of mixture

for Examples 1 and 2

 $\frac{7.5}{100} = \frac{0.2 \ (10)}{10 + x} \qquad x \text{ is the amount silver added .}$

7.5 + (10 + x) = 100 (0.2)(10) Cross multiply.

GUIDED PRACTICE

75 + 7.5x = 200 Simplify.

7.5x = 125 Subtract 7.5 from each side.

 $x = 16 \frac{2}{3}$ Divide each side by 7.5.

You should mix $16\frac{2}{3}$ oz of pure silver with the jeweler silver

Standardized Test Practice

What is the solution of
$$\frac{5}{x} + \frac{7}{4} = -\frac{9}{x}$$
?
(A) -10 (B) -8 (C) -4 (D) 6

SOLUTION

EXAMPLE 3

$$\frac{5}{x} + \frac{7}{4} = -\frac{9}{x}$$

$$4x(\frac{5}{x} + \frac{7}{4}) = 4x - \frac{9}{x}$$

$$20 + 7x = -36$$

$$7x = -56$$

$$x = -8$$

Write original equation.
Multiply each side by the *LCD*, 4*x*.
Simplify.
Subtract 20 from each side.
Divide each side by 7.

Standardized Test Practice

EXAMPLE 3

The correct answer is B. (A) (B) (C) (D)

Solve a rational equation with two solutions

Solve:
$$1 - \frac{8}{x-5} = \frac{3}{x}$$

 $1 - \frac{8}{x-5} = \frac{3}{x}$ Write original equation.
 $x(x-5) \left(1 - \frac{8}{x-5}\right) = \frac{x(x-5)}{\cdot \frac{3}{x}}$ Multiply each side by the *LCD*, $x(x-5)$.
 $x(x-5) - 8x = 3(x-5)$ Simplify.
 $x^2 - 5x - 8x = 3x - 15$ Simplify.
 $x^2 - 16x + 15 = 0$ Write in standard form.
 $(x-1)(x-15) = 0$ Factor.
 $x = 1 \text{ or } x = 15$ Zero product property

EXAMPLE 4

ANSWER

The solutions are 1 and 15. Check these in the original equation.

EXAMPLE 5 Check for extraneous solutions

Solve:
$$\frac{6}{x-3} = \frac{8x^2}{x^2-9} - \frac{4x}{x+3}$$

SOLUTION

Write each denominator in factored form. The *LCD* is (x + 3)(x - 3).

$$\frac{6}{x-3} = \frac{8x^2}{(x+3)(x-3)} - \frac{4x}{x+3}$$

(x+3)(x-3) $\cdot \frac{6}{x-3} = (x+3)(x-3) \cdot \frac{8x^2}{(x+3)(x-3)} - (x+3)(x-3) \cdot \frac{4x}{x+3}$
 $6(x+3) = 8x^2 - 4x(x-3)$
 $6x + 18 = 8x^2 - 4x^2 + 12x$

Check for extraneous solutions

$$0 = 4x^{2} + 6x - 18$$

$$0 = 2x^{2} + 3x - 9$$

$$0 = (2x - 3)(x + 3)$$

$$2x - 3 = 0 \text{ or } x + 3 = 0$$

$$x = \frac{3}{2} \text{ or } x = -3$$

You can use algebra or a graph to check whether either of the two solutions is extraneous.

Algebra

EXAMPLE 5

The solution checks, $\frac{3}{2}$ but the apparent solution -3 is extraneous, because substituting it in the equation results in division by zero, which is undefined.

Check for extraneous solutions

EXAMPLE 5

 $\frac{6}{-3-3} \neq \frac{8(-3)^2}{(-3)^2 - 9} - \frac{4(-3)}{-3+3}$ Intersection X=1.5 Y = -4

Solve the equation by using the *LCD*. Check for extraneous solutions.

5.
$$\frac{7}{2} + \frac{3}{x} = 3$$

GUIDED PRACTICE

Write each denominator in factored form. The *LCD* is 2x $\frac{7}{2} + \frac{3}{x} = 3$

for Examples 3, 4 and 5

$$2x \cdot \frac{7}{2} + 2x \cdot \frac{3}{x} = 2x \cdot 3$$

7x + 6 = 6x

x = -6

for Examples 3, 4 and 5

6.
$$\frac{2}{x} + \frac{4}{3} = 2$$

SOLUTION

Write each denominator in factored form. The *LCD* is 3x

$$\frac{2}{x} + \frac{4}{3} = 2$$

$$3x \cdot \frac{2}{x} + 3x \cdot \frac{4}{3} = 3x \cdot 2$$

$$6 + 4x = 6x$$

$$6 = 2x$$

$$x = 3$$

for Examples 3, 4 and 5

$$7. \frac{3}{7} + \frac{8}{x} = 1$$

SOLUTION

Write each denominator in factored form. The *LCD* is 7*x*

$$\frac{3}{7} + \frac{8}{x} = 1$$

$$7x \cdot \frac{3}{7} + 7x \cdot \frac{8}{x} = 7x \cdot 1$$

$$3x + 56 = 7x$$

$$56 = 4x$$

$$x = 14$$

for Examples 3, 4 and 5

$$\frac{8 \cdot \frac{3}{2}}{2} + \frac{4}{x-1} = \frac{x+1}{x-1}$$
SOLUTION

Write each denominator in factored form. The *LCD* is 2(x-1)

$$\frac{3}{2} + \frac{4}{x-1} = \frac{x+1}{x-1}$$

$$(x-1)(2)\cdot\frac{3}{2} + (x-1)(2)\cdot\frac{4}{x-1} = (x-1)(2)\cdot\frac{x+1}{x-1}$$

$$3x - 3 + 8 = 2x + 2$$

x = -3

for Examples 3, 4 and 5

$$9.\frac{3x}{x+1} - \frac{5}{2x} = \frac{3}{2x}$$

SOLUTION

Write each denominator in factored form. The *LCD* is (x + 1)(2x)

$$\frac{3x}{x+1} - \frac{5}{2x} = \frac{3}{2x}$$

$$2x(x+1) \cdot \frac{3x}{x+1} - 2x(x+1) \cdot \frac{5}{2x} = 2x(x+1) \cdot \frac{3}{2x}$$

GUIDED PRACTICE

for Examples 3, 4 and 5

$$6x^{2} - 5x - 5 = 3x + 3$$

$$0 = 3x + 3 - 6x^{2} + 5x + 5$$

$$0 = -6x^{2} + 8x + 8$$

$$0 = (3x + 2) (x - 2)$$

$$3x + 2 = 0$$
 or
$$x - 2 = 0$$

$$x = -\frac{2}{3}$$
 or
$$x = 2$$

for Examples 3, 4 and 5

$$10.\frac{5x}{x-2} = 7 + \frac{10}{x-2}$$

SOLUTION

Write each denominator in factored form. The *LCD* is x - 2

$$\frac{5x}{x-2} = 7 + \frac{10}{x-2}$$

$$x - 2 \cdot \frac{5x}{x-2} = (x-2) \cdot 7 + (x-2) \cdot \frac{10}{x-2}$$

$$5x = 7x - 14 + 10$$

$$4 = 2x$$

$$x = 2$$

x=2 results in no solution.

Solve a rational equation given a function

Video Game Sales

EXAMPLE 6

From 1995 through 2003, the annual sales *S* (in billions of dollars) of entertainment software can be modeled by

$$S(t) = \frac{848t^2 + 3220}{115t^2 + 1000} \quad 0 \le t \le 8$$

where *t* is the number of years since 1995. For which year were the total sales of entertainment software about \$5.3 billion?

SOLUTION

$$S(t) = \frac{848t^2 + 3220}{115t^2 + 1000}$$
 Write given function.
$$5.3 = \frac{848t^2 + 3220}{115t^2 + 1000}$$
 Substitute 5.3 for *S*(*t*).

Solve a rational equation given a function

5.3(115
$$t^2$$
 + 1000) = 848 t^2 + 3220
609.5 t^2 + 5300 = 848 t^2 + 3220
5300 = 238.5 t^2 + 3220
2080 = 238.5 t^2 + 3220
8.72≈ t^2
±2.95≈ t
Multiply each side by
115 t^2 + 1000.
Simplify.
Subtract 609.5 t^2 from
each side.
Divide each side
by 238.5.
±2.95≈ t
Take square roots of
each side.

Because -2.95 is not in the domain $(0 \le t \le 8)$, the only solution is 2.95.

EXAMPLE 6

ANSWER

So, the total sales of entertainment software were about \$5.3 billion about 3 years after 1995, or in 1998.

11. What If? Use the information in Example 6 to determine in which year the total sales of entertainment software were about \$4.5 billion.

for Example 6

SOLUTION

GUIDED PRACTICE

$$S(t) = \frac{848t^2 + 3220}{115t^2 + 1000}$$

$$4.5 = \frac{848t^2 + 3220}{115t^2 + 1000}$$

$$4.5(115t^2 + 1000) = 848t^2 + 3220$$

$$517.5t^2 + 4500 = 848t^2 + 3220$$

$$1280 = 330.5t^2$$

Write given function.

Substitute 5.3 for S(t).

Multiply each side by $115t^2 + 1000$.

Simplify.

GUIDED PRACTICE	for Example 6	501
3.88 = + 2	Divide each side by 330.5.	
$\pm 1.95 \approx t$	Take square roots of each side.	

Because -1.95 is not the domain $(0 \le t \le 8)$, the only solution is 1.95

So , the total sales of entertainment software were about \$ 4.5 million about two your after 1995, or in 1997