EXAMPLE 1) Solve a rational equation by cross multiplying

Solve: $\frac{3}{x+1}=\frac{9}{4 x+1}$

$$
\begin{aligned}
\frac{3}{x+1} & =\frac{9}{4 x+1} & & \text { Write original equation. } \\
3(4 x+5) & =9(x+1) & & \text { Cross multiply. } \\
12 x+15 & =9 x+9 & & \text { Distributive property } \\
3 x+15 & =9 & & \text { Subtract } 9 x \text { from each side. } \\
3 x & =-6 & & \text { Subtract } 15 \text { from each side. } \\
x & =-2 & & \text { Divide each side by } 3 .
\end{aligned}
$$

ANSWER

The solution is -2 . Check this in the original equation.

EXAMPLE 2

ALLOYS

An alloy is formed by mixing two or more metals. Sterling silver is an alloy composed of 92.5% silver and 7.5% copper by weight. Jewelry silver is composed of 80% silver and 20% copper by weight. How much pure silver should you mix with 15 ounces of jewelry silver to make sterling silver?

SOLUTION

Percent of copper in mixture $=\frac{\text { Weight of copper in mixture }}{\text { Total weight of mixture }}$

$$
\begin{aligned}
\frac{7.5}{100} & =\frac{0.2(15)}{15+x} & & x \text { is the amount of silver added. } \\
7.5(15+x) & =100(0.2)(15) & & \text { Cross multiply. } \\
112.5+7.5 x & =300 & & \text { Simplify. } \\
7.5 x & =187.5 & & \text { Subtract } 112.5 \text { from each side. } \\
x & =25 & & \text { Divide each side by } 7.5 .
\end{aligned}
$$

ANSWER

You should mix 25 ounces of pure silver with the jewelry silver.

GUIDED PRACTICE

1. $\frac{3}{5 x}=\frac{2}{x-7}$

SOLUTION

$$
\begin{aligned}
\frac{3}{5 x} & =\frac{2}{x-7} \\
3(x-7) & =2(5 x) \\
3 x-21 & =10 x \\
-7 x-21 & =0 \\
-7 x & =21 \\
x & =-3
\end{aligned}
$$

Write original equation.
Cross multiply.
Distributive property
Subtract $10 x$ from each side.
Subtract 21 from each side.
Divide each side by 7 .

ANSWER

The solution is -3 . Check this in the original equation

$$
\text { 2. } \frac{-4}{x+3}=\frac{5}{x-3}
$$

SOLUTION

$$
\begin{aligned}
\frac{-4}{x+3} & =\frac{5}{x-3} \\
-4(x-3) & =5(x+3) \\
-4 x+12 & =5 x+15 \\
-9 x+12 & =15 \\
-9 x & =3 \\
x & =\frac{-1}{3}
\end{aligned}
$$

Write original equation.
Cross multiply.
Distributive property
Subtract $5 x$ from each side.
Subtract 12 from each side.
Divide each side by 9 .

ANSWER

The solution is $\frac{-1}{3}$. Check this in the original equation

3. $\frac{1}{2 x+5}=\frac{x}{11 x+8}$

SOLUTION

$$
\begin{array}{cl}
\frac{1}{2 x+5}=\frac{x}{11 x+8} & \text { Write original equation. } \\
1(11 x+8)=x(2 x+5) & \text { Cross multiply. } \\
11 x+8=2 x^{2}+5 x & \text { Distributive property } \\
2 x^{2}-6 x^{2}+8=0 & \text { Subtract } 2 x^{2}, \text { and } 5 \text { from each side. } \\
x^{2}-3 x^{2}+4=0 & \\
(x-4)(x+1)=0 &
\end{array}
$$

GUIDED PRACTICE for Examples 1 and 2

$$
x=4, x=-1
$$

ANSWER $\quad x=4, x=-1$
4. What If? In Example 2, suppose you have 10 ounces of jewelry silver.How much pure silver must be mixed with the jewelry silver to make sterling silver?

SOLUTION

Percent of copper in mixture
$=$ Weight of copper in mixture
Total weight of mixture

$$
\frac{7.5}{100}=\frac{0.2(10)}{10+x}
$$

$$
7.5+(10+x)=100(0.2)(10) \text { Cross multiply. }
$$

$$
75+7.5 x=200
$$

$$
7.5 x=125
$$

$$
x=16 \frac{2}{3} \quad \text { Divide each side by } 7.5
$$

You should mix $16 \frac{2}{3}$ oz of pure silver with the jeweler silver

EXAMPLE 3 Standardized Test Practice

What is the solution of $\frac{5}{x}+\frac{7}{4}=-\frac{9}{x}$?
(A) -10
(B) -8
(C) -4
(D) 6

SOLUTION

$$
\begin{aligned}
\frac{5}{x}+\frac{7}{4} & =-\frac{9}{x} \\
4 x\left(\frac{5}{x}+\frac{7}{4}\right) & =4 x-\frac{9}{x} \\
20+7 x & =-36 \\
7 x & =-56 \\
x & =-8
\end{aligned}
$$

Write original equation.

Multiply each side by the $L C D, 4 x$.

Simplify.
Subtract 20 from each side.
Divide each side by 7.

ANSWER

The correct answer is B.(A) (B) (C) (D)

EVAMPI Solving Rational Expressions

EXAMPLE 4) Solve a rational equation with two solutions

Solve: $1-\frac{8}{x-5}=\frac{3}{x}$

$$
\begin{aligned}
1-\frac{8}{x-5} & =\frac{3}{x} & & \text { Write original equation. } \\
x(x-5)\left(1-\frac{8}{x-5}\right) & =x(x-5) . & & \frac{3}{x} \text { Multiply each side by the } L C D, x(x-5) . \\
x(x-5)-8 x & =3(x-5) & & \text { Simplify. } \\
x^{2}-5 x-8 x & =3 x-15 & & \text { Simplify. } \\
x^{2}-16 x+15 & =0 & & \text { Write in standard form. } \\
(x-1)(x-15) & =0 & & \text { Factor. } \\
x=1 \text { or } x & =15 & & \text { Zero product property }
\end{aligned}
$$

ANSWER

The solutions are 1 and 15 . Check these in the original equation.

Solve: $\frac{6}{x-3}=\frac{8 x^{2}}{x^{2}-9}-\frac{4 x}{x+3}$

SOLUTION

Write each denominator in factored form.
The $L C D$ is $(x+3)(x-3)$.

$$
\begin{aligned}
\frac{6}{x-3} & =\frac{8 x^{2}}{(x+3)(x-3)}-\frac{4 x}{x+3} \\
(x+3)(x-3) \cdot \frac{6}{x-3}= & (x+3)(x-3) \cdot \frac{8 x^{2}}{(x+3)(x-3)}-(x+3)(x-3) \cdot \frac{4 x}{x+3} \\
6(x+3) & =8 x^{2}-4 x(x-3) \\
6 x+18 & =8 x^{2}-4 x^{2}+12 x
\end{aligned}
$$

EXAMPLE 5

$$
\begin{aligned}
0 & =4 x^{2}+6 x-18 \\
0 & =2 x^{2}+3 x-9 \\
0 & =(2 x-3)(x+3) \\
2 x-3 & =0 \text { or } x+3=0 \\
x & =\frac{3}{2} \text { or } x=-3
\end{aligned}
$$

You can use algebra or a graph to check whether either of the two solutions is extraneous.

Algebra

The solution checks, $\frac{3}{2}$ but the apparent solution -3 is extraneous, because substituting it in the equation results in division by zero, which is undefined.

EXAMPLE 5

Graph

Graph $y=\frac{6}{x-3}$ and

$$
\frac{6}{-3-3} \neq \frac{8(-3)^{2}}{(-3)^{2}-9}-\frac{4(-3)}{-3+3}
$$

$$
y=\frac{8 x^{2}}{x^{2}-9}-\frac{4 x}{x+3}
$$

The graphs intersect when $x=\frac{3}{2}$ but not when $x=-3$.

ANSWER

The solution is $\frac{3}{2}$.

GUIDED PRACTICE

Solve the equation by using the $L C D$. Check for extraneous solutions.
5. $\frac{7}{2}+\frac{3}{x}=3$

SOLUTION

Write each denominator in factored form. The $L C D$ is $2 x$

$$
\begin{aligned}
\frac{7}{2}+\frac{3}{x} & =3 \\
2 x \cdot \frac{7}{2}+2 x \cdot \frac{3}{x} & =2 x \cdot 3 \\
7 x+6 & =6 x \\
x & =-6
\end{aligned}
$$

6. $\frac{2}{x}+\frac{4}{3}=2$

SOLUTION

Write each denominator in factored form. The $L C D$ is $3 x$
$\frac{2}{x}+\frac{4}{3}=2$
$3 x \cdot \frac{2}{x}+3 x \cdot \frac{4}{3}=3 x \cdot 2$

$$
6+4 x=6 x
$$

$$
6=2 x
$$

$$
x=3
$$

$$
\text { 7. } \frac{3}{7}+\frac{8}{x}=1
$$

SOLUTION

Write each denominator in factored form. The $L C D$ is $7 x$

$$
\begin{aligned}
\frac{3}{7}+\frac{8}{x} & =1 \\
7 x \cdot \frac{3}{7}+7 x \cdot \frac{8}{x} & =7 x \cdot 1 \\
3 x+56 & =7 x \\
56 & =4 x \\
x & =14
\end{aligned}
$$

GUIDED PRACTICE

8. $\frac{3}{2}+\frac{4}{x-1}=\frac{x+1}{x-1}$

SOLUTION

Write each denominator in factored form. The $L C D$ is $2(x-1)$

$$
\frac{3}{2}+\frac{4}{x-1}=\frac{x+1}{x-1}
$$

$$
(x-1)(2) \cdot \frac{3}{2}+(x-1)(2) \cdot \frac{4}{x-1}=(x-1)(2) \cdot \frac{x+1}{x-1}
$$

$$
3 x-3+8=2 x+2
$$

$$
x=-3
$$

9. $\frac{3 x}{x+1}-\frac{5}{2 x}=\frac{3}{2 x}$

SOLUTION

Write each denominator in factored form. The $L C D$ is $(x+1)(2 x)$

$$
\frac{3 x}{x+1}-\frac{5}{2 x}=\frac{3}{2 x}
$$

$2 x(x+1) \cdot \frac{3 x}{x+1}-2 x(x+1) \cdot \frac{5}{2 x}=2 x(x+1) \frac{3}{2 x}$

$$
\begin{aligned}
& 6 x^{2}-5 x-5=3 x+3 \\
& 0=3 x+3-6 x^{2}+5 x+5 \\
& 0=-6 x^{2}+8 x+8 \\
& 0=(3 x+2)(x-2) \\
& 3 x+2=0 \quad \text { or } \quad x-2=0 \\
& x=-\frac{2}{3} \text { or } \quad x=2
\end{aligned}
$$

10. $\frac{5 x}{x-2}=7+\frac{10}{x-2}$

SOLUTION

Write each denominator in factored form. The $L C D$ is $x-2$

$$
\begin{aligned}
\frac{5 x}{x-2} & =7+\frac{10}{x-2} \\
x-2 \cdot \frac{5 x}{x-2} & =(x-2) \cdot 7+\left(x-2 \cdot \frac{10}{x-2}\right. \\
5 x & =7 x-14+10 \\
4 & =2 x \\
x & =2
\end{aligned}
$$

$x=2$ results in no solution.

EXAMPLE 6 Solve a rational equation given a function

Video Game Sales

From 1995 through 2003, the annual sales S (in billions of dollars) of entertainment software can be modeled by

$$
S(t)=\frac{848 t^{2}+3220}{115 t^{2}+1000} \quad 0 \leq t \leq 8
$$

where t is the number of years since 1995. For which year were the total sales of entertainment software about $\$ 5.3$ billion?

SOLUTION

$$
\begin{aligned}
S(t) & =\frac{848 t^{2}+3220}{115 t^{2}+1000} \text { Write given function. } \\
5.3 & =\frac{848 t^{2}+3220}{115 t^{2}+1000} \text { Substitute } 5.3 \text { for } S(t)
\end{aligned}
$$

EXAMPLE 6 Solve ${ }^{\text {Sowing Fational Eprossions }}$

EXAMPLE 6 Solve a rational equation given a function

$$
\begin{aligned}
5.3\left(115 t^{2}+1000\right) & =848 t^{2}+3220 \\
609.5 t^{2}+5300 & =848 t^{2}+3220 \\
5300 & =238.5 t^{2}+3220 \\
2080 & =238.5 t^{2} \\
8.72 & \approx t^{2} \\
\pm 2.95 & \approx t
\end{aligned}
$$

Multiply each side by $115 t^{2}+1000$.

Simplify.
Subtract $609.5 t^{2}$ from each side.
Subtract 3220 from each side.
Divide each side by 238.5 .
Take square roots of each side.

Because -2.95 is not in the domain ($0 \leq t \leq 8$), the only solution is 2.95 .

EXAMPLE 6 Solve ${ }^{\text {Soling Paional Epperssions }}$

ANSWER

So, the total sales of entertainment software were about \$5.3 billion about 3 years after 1995, or in 1998.

GUIDED PRACTICE

11. What If? Use the information in Example 6 to determine in which year the total sales of entertainment software were about $\$ 4.5$ billion.

SOLUTION

$$
\begin{aligned}
& S(t)=\frac{848 t^{2}+3220}{115 t^{2}+1000} \\
& 4.5=\frac{848 t^{2}+3220}{115 t^{2}+1000} \\
& 4.5\left(115 t^{2}+1000\right)=848 t^{2}+3220
\end{aligned}
$$

$$
517.5 t^{2}+4500=848 t^{2}+3220
$$

$$
1280=330.5 t^{2}
$$

Write given function.

Substitute 5.3 for $S(t)$.
Multiply each side by $115 t^{2}+1000$.

Simplify.
Subtract.
$3.88=+2$
$\pm 1.95 \approx t$

> Divide each side by 330.5 .

> Take square roots of each side.

Because - 1.95 is not the domain ($0 \leq \mathrm{t} \leq 8$), the only solution is 1.95

So , the total sales of entertainment software were about $\$ 4.5$ million about two your after 1995, or in 1997

