Algebra II

Date: Notes 6.3 Day 2

Synthetic Division

Objective: To divide polynomials using synthetic division.

Vocabulary and Key Concepts

<u>Synthetic Division</u>: A method of dividing polynomials in which all variables and exponents are omitted and division is performed on the list of coefficients.

Use synthetic division to divide $5x^3 - 6x^2 + 4x - 1$ by x - 3

Step 1 Reverse the sign of the constant term in the divisor. Write the coefficients of the polynomial in standard form.

$$x - 3 \overline{\big) 5x^3 - 6x^2 + 4x - 1}$$

Step 2 Bring down the coefficient

Step 3 Multiply the first coefficient by the new divisor. Write the result under the next coefficient. Add.

Step 4 Repeat the steps of multiplying and adding until the remainder is found.

3	5	- 6	4	- 1
x_		15	27	93
	5	9	31	92

The quotient (answer) is $5x^2 + 9x + 31$ R 92

Class Examples: Use synthetic division to divide. EX 1: $x^3 + 4x^2 + x - 6$ by x + 1

Determine whether x + 2 is a factor of each polynomial. EX 2: $x^2 + 10x + 16$ EX 3: $x^3 + 7x^2 - 5x - 6$

Use synthetic division and the given factor to completely factor the polynomial function.

EX 4: $y = x^3 + 6x^2 - x - 30$; x + 3

The Remainder Theorem

If a polynomial P(x) of degree $n \ge 1$ is divided by (x - a), where a is a constant, then the remainder is P(a).

Use synthetic division and the Remainder Theorem to find P(a). EX 5: $P(x) = 2x^4 - 3x^2 + 4x - 1$; a = 4

```
EX 6: P(x) = x^4 + x^3 - x^2 - 2x; a = 3
```