Synthetic Division

Objective: To divide polynomials using synthetic division.

Vocabulary and Key Concepts

Synthetic Division: A method of dividing polynomials in which all variables and exponents are omitted and division is performed on the list of coefficients.

Use synthetic division to divide $5 x^{3}-6 x^{2}+4 x-1$ by $x-3$
Step 1 Reverse the sign of the constant term in the divisor. Write the coefficients of the polynomial in standard form.

$$
\begin{gathered}
x - 3 \longdiv { 5 x ^ { 3 } - 6 x ^ { 2 } + 4 x - 1 } \\
35-6 \quad 4-1
\end{gathered}
$$

Step 2 Bring down the coefficient

Step 3 Multiply the first coefficient by the new divisor. Write the result under the next coefficient. Add.

Step 4 Repeat the steps of multiplying and adding until the remainder is found.

3	5	-6	4	-1
\times		15	27	93
5	9	31	92	

The quotient (answer) is $5 x^{2}+9 x+31 R 92$

Class Examples:
Use synthetic division to divide.
EX 1: $x^{3}+4 x^{2}+x-6$ by $x+1$

Determine whether $x+2$ is a factor of each polynomial.
EX 2: $x^{2}+10 x+16$
EX 3: $\quad x^{3}+7 x^{2}-5 x-6$

Use synthetic division and the given factor to completely factor the polynomial function.
EX 4: $y=x^{3}+6 x^{2}-x-30 ; x+3$

The Remainder Theorem

If a polynomial $P(x)$ of degree $n \geq 1$ is divided by ($x-a$), where a is a constant, then the remainder is $P(a)$.

Use synthetic division and the Remainder Theorem to find $P(a)$. EX 5: $\quad P(x)=2 x^{4}-3 x^{2}+4 x-1 ; a=4$

EX 6: $\quad P(x)=x^{4}+x^{3}-x^{2}-2 x ; \quad a=3$

