Solving Quadratic Equations by
 Completing the Square

Return to
Table of
Contents

Completing the Square

In algebra, "Completing the Square" is a technique for changing a quadratic expression from standard form: $a x+b x+c$ to the vertex/graphing form: $a(x+17)+k$.

It can also be used as a method for solving quadratic equations.

Completing the Square

Consider the following square. If its side length is $(x+3)$ then the area of the square would be \qquad ?

Notice all 3 expressions are equivalent.
In the standard form, $b=6$ and $c=9$.
That is, $(b / 2)^{2}=c$.

Completing the Square

Form a perfect square trinomial with lead coefficient of 1

$$
x^{2}+b x+c \text { where } c=(b / 2)^{2}
$$

Find the value that completes the square.

$$
\begin{aligned}
& x^{2}+8 x+\ldots=\left(x _\right)^{2} \\
& x^{2}+20 x+\ldots=\left(x _\right)^{2} \\
& x^{2}-16 x+\ldots=(x \square)^{2} \\
& x^{2}-2 x+\ldots=(x \square)^{2}
\end{aligned}
$$

35 Find $\left(\right.$ 中 $^{2}{ }^{\mathbf{2}} \mathbf{i f} \mathbf{b}=14$.

36 Find $(\phi)^{2}$ if $b=10$.

37 Find $\left({ }^{(}{ }^{2}{ }^{2}\right.$ if $\mathbf{b}=\mathbf{- 1 2}$.

38 Complete the square to form a perfect square trinomial.
$x^{2}+18 \mathrm{x}+$?

39 Complete the square to form a perfect square trinomial.
$x^{2}-6 x+?$

Completing the Square

Step 1 - Write the equation in the form $\mathrm{x}^{2}+\mathrm{bx}=\mathrm{c}$.
Step 2 - Find $(b \div 2)^{2}$.
Step 3 - Complete the square by adding $(b \div 2)^{2}$ to both sides of the equation.

Step 4 - Factor the perfect square trinomial.
Step 5 - Take the square root of both sides.
Step 6 - Write two equations, using both the positive and negative square root and solve each equation.

Completing the Square

Let's look at an example to solve:

$$
x^{2}+14 x-15=0
$$

Step 1 - Rewrite Equation
Step 2 - Find (b/2)
Step 3 - Add the result to both sides
Step 4 - Factor \& Simplify
Step 5 - Take Square Root of both sides
Step 6 - Write 2 Equations \& Solve

How can you check your solutions?

Completing the Square

Let's look at an example to solve:

$$
x^{2}-2 x-2=0
$$

Step 1 - Rewrite Equation
Step 2 - Find (b/2)
Step 3 - Add the result to both sides
Step 4 - Factor \& Simplify
Step 5 - Take Square Root of both sides
Step 6 - Write 2 Equations \& Solve

How can you check your solutions?

40 Solve the following by completing the square :

$$
x^{2}+6 x=-5
$$

A $\quad \mathbf{- 5}$
B -2
C -1
D 5
E 2

41 Solve the following by completing the square :

$$
x^{2}-8 x=20
$$

A -10
B -2
C -1
D 10
E 2

42 Solve the following by completing the square :
$-36 x=3 x^{2}+108$
Hint: Look for G1

A $\quad \mathbf{- 6}$
B $\sqrt{6}$
C 0
D 6
E $-\sqrt{6}$

Completing the Square

Challenge:

$$
3 x^{2}-10 x=-3
$$

Step 1 - Rewrite Equation
*Note: There is no GCF to factor out like the previous example.

Step 2 - Find (b/2)
Step 3 - Add the result to both sides
Step 4 - Factor \& Simplify
Step 5 - Take Square Root of both sides
Step 6 - Write 2 Equations \& Solve

Completing the Square

Challenge:

$$
4 x^{2}-17 x+4=0
$$

Step 1 - Rewrite Equation
Step 2 - Find (b/2)
Step 3 - Add the result to both sides
Step 4 - Factor \& Simplify
Step 5 - Take Square Root of both sides
Step 6 - Write 2 Equations \& Solve

Completing the Square

Challenge:

$$
-6 x^{2}-25 x-25=0
$$

*Note: There is no GCF to factor out.

43 Solve the following by completing the square :

$$
\begin{aligned}
& \text { A } \frac{5}{4}+\sqrt{2} \\
& \text { B } \frac{5}{4}-\sqrt{2} \\
& \text { C }-\frac{5}{4}+\sqrt{2} \\
& \text { D }-\frac{5}{4}-\sqrt{2} \\
& \text { E } \frac{5 \pm \sqrt{2}}{2}
\end{aligned}
$$

