Return to Table of Contents

The square root of a negative number has no real solution, but it does have an imaginary one:

$$\sqrt{-1} = i$$

An expression is **complex** (also called imaginary) if it has an *i* in it.

 $i^{2} = -1$ $i^{3} = -i$ $i^{4} = 1$

Why does this work?

Teacher Notes

Higher order *i*'s can be simplified into *i*, -1, -*i*, or 1.

If the power of *i* is even:

...and the exponent is a multiple of 4, then it simplifies to 1.

...and the exponent is a multiple of 2, but not 4 , then it simplifies to -1.

If the power of *i* is odd:

...factor out one *i* to create an even exponent. Use the rules for even exponents and leave the factored *i*.

142 Simplify: *i*¹⁹ A *i* B -1 C -*i*

D 1

143 Simplify: i^{91}

A i

- B -1
- C -i

D 1

144 Simplify: i^{100} A iB -1 C -iD 1

145 Simplify: *i*⁷⁷ A *i* B -1 C -*i*

D 1

Simplify radical expressions that have a negative by taking out *i* first. Then, perform the indicated operation(s). Simplify any expression that has a power of *i* greater than one.

$$\sqrt{-16} \cdot \sqrt{-9} \qquad \qquad \sqrt{-15} \cdot \sqrt{-30} \qquad \qquad \sqrt{-16x^2}$$

Examples:

 $\sqrt{-45a^2}$

 $\sqrt{-4m^2n^4} \cdot \sqrt{-24m^4n} \qquad \qquad \sqrt{-3p^3} \cdot \sqrt{-27p}$

146 Simplify: $\sqrt{-25}$

A 5*i* B –5*i* C $5\sqrt{i}$ D -5

Answer

147 Simplify: $\sqrt{-49a^2b^4}$

A $7ab^2i$ **B** –7*abi*

Answer

148 Simplify:
$$-\sqrt{-64}$$

A 8
B -8
C 8*i*
D -8*i*

149 Simplify: $\sqrt{-9}\sqrt{-25}$ A 15 B -15 C 15*i* D -15*i*

Answer

150 Simplify: $\sqrt{-10a^2}\sqrt{-30a^4}$

- A $10|a^3|i\sqrt{3}$
- B $-10a^{3}i\sqrt{3}$
- C $10|a^{3}i|\sqrt{3}$ D $-10|a^{3}|\sqrt{3}$

Working with Complex Numbers

Operations, such as addition, subtraction, multiplication and division, can be done with *i*.

Treat *i* like any other variable, except at the end make sure *i* is at most to the first power.

Working with Complex Numbers

Answers of complex numbers are left in standard form. The standard form of a complex number is a + bi.

Examples of standard form of a complex number:

3-2i 0+3i 8+0i
$$\frac{4}{13} - \frac{3i}{13}$$
 $\frac{1}{2} + \frac{3i}{4}$

Adding or Subtracting Complex Numbers

When adding or subtracting complex numbers, collect like terms. Leave answers in standard form.

$$(7+4i)+(3-2i)$$
 $(4+3i)-(5-6i)$

(5-6i)+(4+8i)

(12+3i) - (12-3i)

When multiplying, multiply numbers, multiply *i*'s and simplify any *i* with a power greater than one.

(i)(3i)(2i)	$(3i)^2(2i)$

When multiplying, multiply numbers, multiply *i*'s and simplify any *i* with a power greater than one.

$$(4i)(-5i)(3i)(-2i)$$
 $(2i)^3(4i)^2$

Multiply and leave answers in standard form.

2i(3-4i) $(4-3i)^2$

Multiply and leave answers in standard form.

(3-2i)(4+i) (4-5i)(4+5i)

Answer

151 Simplify: (3+5i) + (-2+3i)

A 5 + 8iB 1 + 8iC 5 + 2iD 1 + 2i

152 Simplify: (3+5i) - (-2+3i)

- A 5 + 8i
- B 1+8*i*
- C 5 + 2i
- D 1 + 2i

153 Simplify: (3+5i)(-2+3i)

A
$$-21+i$$

C
$$-6+i$$

D 6+i

154 Simplify: $(3+5i)^2$

- A $9+25i^2$
- B -16
- C -16+15*i*
- D -16 + 30i

Answer

155 Simplify: (3+5i)(3-5i)

- A 9-30*i*
- B 34
- C 9 + 30i
- D -16

Dividing with *i*

Since *i* represents a square root, a fraction is not insimplified form if there is an *i* in the denominator. And, similar to roots, if the denominator is a monomial just multiply top and bottom of the fraction by *i* to rationalize.

 $\frac{3}{2i}$

156 Simplify:
$$\frac{3}{7i}$$
B $\frac{-3i}{7}$ C $\frac{21i}{7}$ D $\frac{7i}{3}$ D $\frac{7$

157 Simplify:

$$\frac{-5}{10i}$$

 A
 $\frac{i}{2}$
 B
 $\frac{-i}{2}$

 C
 $\frac{5i}{10}$
 D
 $\frac{-5i}{10}$
 Image: Deletee in the second s

158 Simplify:
$$\frac{5-2i}{4i}$$

A $\frac{2+5i}{4}$
B $\frac{-2+5i}{4}$
C $\frac{1-5i}{2}$
D $-\frac{1}{2}-\frac{5i}{4}$

Rationalizing Complex Numbers

If the denominator is a binomial including *i*, rationalize it by multiplying top and bottom by its conjugate. Remember using conjugates earlier in this unit: the conjugate of 4 - 3i is 4 + 3i.

Example:	5
	$\overline{4-3i}$

Rationalizing Complex Numbers

Simplify:

2	4 + i	1 - 6i
$\overline{3-2i}$	$\overline{5+3i}$	1 + 6i

160 Simplify:
$$\frac{3-i}{5+4i}$$

A $\frac{19}{41} + \frac{17}{41}i$ C $\frac{11}{41} + \frac{17}{41}i$
B $\frac{19}{41} - \frac{17}{41}i$ D $\frac{11}{41} - \frac{17}{41}i$

Answer

Answer

162 Simplify:
$$\frac{1+2i}{3+6i}$$

A $\frac{15}{45} - \frac{12}{45}i$ C $\frac{4}{15}i$
B $\frac{1}{3} - \frac{4}{15}i$ D $\frac{1}{3}$