Complex Numbers

Return to Table of Contents

Complex Numbers

The square root of a negative number has no real solution, but it does have an imaginary one:

$$
\sqrt{-1}=i
$$

An expression is complex (also called imaginary) if it has an i in it.

Complex Numbers

Complex Numbers: All numbers are technically considered complex numbers. Real Numbers can be written as a + 0i - no imaginary component.

Complex Numbers

$$
\begin{aligned}
& i^{2}=-1 \\
& i^{3}=-i \\
& i^{4}=1
\end{aligned}
$$

Why does this work?

Complex Numbers

Higher order i's can be simplified into $i,-1,-i$, or 1 .

If the power of i is even:
...and the exponent is a multiple of 4 , then it simplifies to 1.
...and the exponent is a multiple of 2,but not 4 , then it simplifies to -1 .

If the power of i is odd:
...factor out one i to create an even exponent. Use the rules for even exponents and leave the factored i.

Complex Numbers

Simplify the following:
$i^{87} \quad i^{64} \quad-i^{18} \quad-i^{27}$
Remember
$i^{2}=-1$
$i^{4}=1$

Complex Numbers

Remember $i^{2}=-1$
 $$
i^{4}=1
$$

More examples:

142 Simplify: i^{19}

$$
\begin{array}{cc}
\mathrm{A} & i \\
\mathrm{~B} & -1 \\
\mathrm{C} & -i \\
\mathrm{D} & 1
\end{array}
$$

143 Simplify: i^{91}

$$
\begin{array}{cc}
A & i \\
B & -1 \\
C & -i \\
D & 1
\end{array}
$$

144 Simplify: i^{100}

$$
\begin{array}{ll}
\mathrm{A} & i \\
\mathrm{~B} & -1 \\
\mathrm{C} & -i \\
\mathrm{D} & 1
\end{array}
$$

145 Simplify: i^{77}
A i
B -1
C -i
D 1

Complex Numbers

Simplify radical expressions that have a negative by taking out i first. Then, perform the indicated operation(s). Simplify any expression that has a power of i greater than one.

$$
\begin{array}{lll}
\sqrt{-16} \cdot \sqrt{-9} & \sqrt{-15} \cdot \sqrt{-30} & \sqrt{-16 x^{2}}
\end{array}
$$

Examples:

Complex Numbers

$-\sqrt{-45 a^{2}} \quad \sqrt{-4 m^{2} n^{4}} \cdot \sqrt{-24 m^{4} n} \quad \sqrt{-3 p^{3}} \cdot \sqrt{-27 p}$

146 Simplify: $\sqrt{-25}$
A $5 i$
B $\quad-5 i$
C $5 \sqrt{i}$
D $\quad-5$

147 Simplify: $\sqrt{-49 a^{2} b^{4}}$

$$
\begin{array}{cc}
\mathrm{A} & 7 a b^{2} i \\
\text { B } & -7 a b i \\
\text { C } & 7|a| b^{2} i \\
\text { D } & 7\left|a b^{2} i\right|
\end{array}
$$

148 Simplify: $-\sqrt{-64}$

A 8
B $\quad-8$
C $\quad 8 i$
D $-8 i$

149 Simplify: $\sqrt{-9} \sqrt{-25}$

A 15
B -15
C $15 i$
D $\quad-15 i$

150 Simplify: $\sqrt{-10 a^{2}} \sqrt{-30 a^{4}}$
A $10\left|a^{3}\right| i \sqrt{3}$
B $\quad-10 a^{3} i \sqrt{3}$
C $\quad 10\left|a^{3} i\right| \sqrt{3}$
D $\quad-10\left|a^{3}\right| \sqrt{3}$

Working with Complex Numbers

Operations, such as addition, subtraction, multiplication and division, can be done with i.

Treat i like any other variable, except at the end make sure i is at most to the first power.

Working with Complex Numbers

Answers of complex numbers are left in standard form.
The standard form of a complex number is a + bi.
Examples of standard form of a complex number:

$$
3-2 i \quad 0+3 i \quad 8+0 i \quad \frac{4}{13}-\frac{3 i}{13} \quad \frac{1}{2}+\frac{3 i}{4}
$$

Adding or Subtracting Complex Numbers

When adding or subtracting complex numbers, collect like terms. Leave answers in standard form.
$(7+4 i)+(3-2 i)$
$(4+3 i)-(5-6 i)$
$(5-6 i)+(4+8 i)$
$(12+3 i)-(12-3 i)$

Multiplying Complex Numbers

When multiplying, multiply numbers, multiply i 's and simplify any i with a power greater than one.
(7i)(3i)(2i)
$(3 i)^{2}(2 i)$

Multiplying Complex Numbers

When multiplying, multiply numbers, multiply i 's and simplify any i with a power greater than one.
$(4 i)(-5 i)(3 i)(-2 i)$
$(2 i)^{3}(4 i)^{2}$

Multiplying Complex Numbers

Multiply and leave answers in standard form.

$$
2 i(3-4 i) \quad(4-3 i)^{2}
$$

Multiplying Complex Numbers

Multiply and leave answers in standard form.

$$
(3-2 i)(4+i) \quad(4-5 i)(4+5 i)
$$

151 Simplify: $(3+5 i)+(-2+3 i)$

> A $5+8 i$
> B $1+8 i$
> C $5+2 i$
> D $1+2 i$

152 Simplify: $(3+5 i)-(-2+3 i)$
A $5+8 i$
B $1+8 i$
C $5+2 i$
D $1+2 i$

153 Simplify: $(3+5 i)(-2+3 i)$

$$
\begin{array}{ll}
\mathrm{A} & -21+i \\
\mathrm{~B} & -21-i \\
\mathrm{C} & -6+i \\
\mathrm{D} & 6+i
\end{array}
$$

154 Simplify: $(3+5 i)^{2}$

$$
\begin{array}{ll}
\text { A } & 9+25 i^{2} \\
\text { B } & -16 \\
\text { C } & -16+15 i \\
\text { D } & -16+30 i
\end{array}
$$

155 Simplify: $(3+5 i)(3-5 i)$
A $9-30 i$
B 34
C $9+30 i$
D -16

Dividing with i

Since i represents a square root, a fraction is not insimplified form if there is an i in the denominator. And, similar to roots, if the denominator is a monomial just multiply top and bottom of the fraction by i to rationalize.

$$
\frac{3}{2 i}
$$

Dividing with i

Simplify:

$\frac{-5}{10 i}$

Dividing with \boldsymbol{i}

Simplify:

$$
\frac{7 i}{6}
$$

$$
\frac{5+4 i}{i}
$$

156 Simplify: $\frac{3}{7 i}$
A $\frac{3 i}{7}$
B $\frac{-3 i}{7}$
C $\frac{21 i}{7}$
D $\frac{7 i}{3}$

157 Simplify: $\frac{-5}{10 i}$
A $\frac{i}{2}$
B $\frac{-i}{2}$
C $\frac{5 i}{10}$
D $\frac{-5 i}{10}$

158 Simplify: $\frac{5-2 i}{4 i}$
A $\frac{2+5 i}{4}$
B $\frac{-2+5 i}{4}$
C $\frac{1-5 i}{2}$
D $-\frac{1}{2}-\frac{5 i}{4}$

Rationalizing Complex Numbers

If the denominator is a binomial including i, rationalize it by multiplying top and bottom by its conjugate. Remember using conjugates earlier in this unit: the conjugate of $4-3 i$ is $4+3 i$.

$$
\text { Example: } \frac{5}{4-3 i}
$$

Rationalizing Complex Numbers

Simplify:

$$
\frac{2}{3-2 i}
$$

$$
\frac{4+i}{5+3 i}
$$

$$
\frac{1-6 i}{1+6 i}
$$

159 Simplify: $\frac{-1}{1-i}$
A $1+\frac{1}{2} i$
B $\frac{1}{2}-\frac{1}{2} i$
C $-\frac{1}{2}-\frac{1}{2} i$
D $-1-i$

160 Simplify: $\frac{3-i}{5+4 i}$
A $\frac{19}{41}+\frac{17}{41} i$
C $\frac{11}{41}+\frac{17}{41} i$
B $\frac{19}{41}-\frac{17}{41} i$
D $\frac{11}{41}-\frac{17}{41} i$

161 Simplify: $\frac{4+i}{6-2 i}$

A $\frac{22}{40}+\frac{14}{40} i$
C $\frac{11}{20}+\frac{7}{20} i$
B $\frac{22}{40}-\frac{14}{40} i$
D $\frac{11}{20}-\frac{7}{20} i$

162 Simplify: $\frac{1+2 i}{3+6 i}$
A $\frac{15}{45}-\frac{12}{45} i$
C $\frac{4}{15} i$
B $\frac{1}{3}-\frac{4}{15} i$
D $\frac{1}{3}$

