4-4

Reteaching

Factoring Quadratic Expressions

Problem

What is $6x^2 - 5x - 4$ in factored form?

$$a = 6$$
, $b = -5$, and $c = -4$

Find a, b, and c; they are the coefficients of each term.

$$ac = -24 \text{ and } b = -5$$

We are looking for factors with product ac and sum b.

Factors of -24	1, –24	-1,-24	2,–12	-2,12	3, –8	-3,8	4, –6	-4, 6
Sum of factors	-23	23	-10	10	- 5	5	-2	2
00-	$\overline{}$							

The factors 3 and -8 are the combination whose sum is -5.

$$\frac{6x^2 + 3x - 8x - 4}{3x(2x + 1) - 4(2x + 1)}$$
$$(3x - 4)(2x + 1)$$

Rewrite the middle term using the factors you found.

Find common factors by grouping the terms in pairs.

Rewrite using the Distributive Property.

Check (3x-4)(2x+1) You can check your answer by multiplying the factors together.

$$6x^2 + 3x - 8x - 4$$

$$6x^2 - 5x - 4$$

Remember that not all quadratic expressions are factorable.

Exercises

Factor each expression.

1.
$$x^2 + 6x + 8$$

3.
$$2x^2 - 6x + 4$$

5.
$$2x^2 - 7x - 4$$

7.
$$x^2 - 5x - 14$$

9.
$$x^2 - x - 72$$

11.
$$x^2 + 12x + 32$$

13.
$$x^2 - 3x - 10$$

15.
$$9x^2 - 6x + 1$$

17.
$$x^2 + 4x - 12$$

19.
$$x^2 - 8x + 12$$

21.
$$x^2 - 6x + 5$$

2.
$$x^2 - 4x + 3$$

4.
$$2x^2 - 11x + 5$$

6.
$$4x^2 + 16x + 15$$

8.
$$7x^2 - 19x - 6$$

10.
$$2x^2 + 9x + 7$$

12.
$$4x^2 - 28x + 49$$

14.
$$2x^2 + 9x + 4$$

16.
$$x^2 - 10x + 9$$

18.
$$x^2 + 7x + 10$$

20.
$$2x^2 - 5x - 3$$

22.
$$3x^2 + 2x - 8$$