Return to Table of Contents

Goals and Objectives

Students will be able to recognize and graph exponential functions.

Why do we need this?

Most relationships for study and research are not linear relationships. Population growth is now heavily studied around the world. Is this a linear function? Why do we study population growth?

The equation for the previous function is y = 10x.

What if you asked your parents to reduce the amount per A to \$3, but then asked them to use the following function:

Graph it!!

What would you get for 7 A's?

Х	Y
1	\$3
2	\$9
3	\$27
4	\$81

Here is the graph of your function!

This is an example of exponential growth.

y = 3[×]

Can you find the amount for 7 A's?

Would that provide some motivation?

Now, let's look at an opposite problem: Suppose you are given 80 M&M's and each day you eat half. What does this graph look like?

This is an example of exponential decay.

X	Y
0	80
1	40
2	20
3	10
4	5

Here is a graph of the M&M problem.

- 1. Where does the graph cross the y-axis?
- 2. How many M&M's do you have on day 2, 3, 4 and 5?
- 3. When are all of the M&M's gone?

Now we will identify Exponential Functions both graphically and algebraically.

Graphically

The exponential function has a curved shape. The y-values in an exponential function will either get larger or smaller very, very quickly. Domain: $(-\infty, \infty)$ (x values)

Range: $(0,\infty)$ (y values)

Why does the range run from 0 to positive infinity?

Teacher Notes

36 Which of the following are graphs of exponential growth? (You can choose more than one.)

General Form of Exponential Functions

The general form of an exponential function is

$$f(x) = ab^x + c$$

where x is the variable and a, b, and c are constants.

b is the base in the exponential expression and

represents the growth rate for the function.

If **b** > 1 then the function shows exponential <u>growth.</u> If **0** < **b** < 1 then the function shows exponential <u>decay.</u>

y = c is the horizontal asymptote.
(0, a + c) is the y-intercept.
(As with all functions, to find the y-intercept, let x = 0.)

38 For the exponential function, identify a, b, and c. Does the equation represent growthordecay?

$$y=3(2)^x+4$$

- A Growth
- B Decay

39 For the same function, what is the equation of the horizontal asymptote?

$$y=3(2)^x+4$$

A y=2
B y=3
C y=4
D y=5

40 Now, find the y-intercept:

$$y=3(2)^x+4$$

A (0, 3)
B (0, 4)
C (0, 7)
D (0, 9)

41 In this exponential equation, identify a, b, and c. Does it represent growth or decay?

$$y = (0.2)^x + 3$$

- A Growth
- B Decay

42 Which of the following is the equation of the horizontal asymptote?

 $y = (0.2)^x + 3$

A y = 0.2
B y = 1
C y = 3
D y = 4

43 Find the y-intercept for the same function:

 $y = (0.2)^x + 3$

A (0, 0.2)
B (0, 1)
C (0, 3)
D (0, 4)

44 Does the following exponential function represent growth or decay?

$$y=4(3)^{-x}$$

A Growth

B Decay

45 Find the horizontal asymptote for the function:

$$y=4(3)^{-x}$$

A y=0
B y=1
C y=3
D y=4

46 For the same function, what is the y-intercept?

 $y = 4(3)^{-x}$

A (0, 0)
B (0, 1)
C (0, 3)
D (0, 4)

Graphing Exponential Functions

$$f(x) = 3(1.2)^x + 2$$

Try it!

To sketch the graph of an exponential function, use the values for a, b and c.

- Identify horizontal asymptote
 (y = c)
- 2) Determine if base shows decay or growth
- 3) Graph y-intercept (0, a + c)
- 4) Sketch graph

Note: A horizontal asymptote is the horizontal line y = c that the function cannot pass.

Graphing Exponential Functions

Graph: $y = (1.3)^x + 2$

