Dividing Polynomials

Return to
Table of
Contents

Division of Polynomials

Here are 3 different ways to write the same quotient:

$$
\begin{gathered}
\left(2 x^{2}-4 x+3\right) \div(x+3) \\
\left(2 x^{2}-4 x+3\right)(x+3)^{-1} \\
\frac{2 x^{2}-4 x+3}{x+3}
\end{gathered}
$$

To divide a polynomial by a monomial, write each term of the polynomial as a fraction with a common denominator. Then simplify each fraction.

$$
\begin{aligned}
& \frac{12 k m^{3}-20 k^{2} m+18 m^{2}}{4 k m} \\
& \frac{12 k m^{3}}{4 k m}-\frac{20 k^{2} m}{4 k m}+\frac{18 m^{2}}{4 k m} \\
& 3 m^{2}-5 k+\frac{9 m}{2 k}
\end{aligned}
$$

Examples

Click to Reveal Answer

$$
\frac{10 c^{3}+16 c-20}{2 c}
$$

$$
\frac{27 d e^{3}-24 d e-21 d}{9 d e}
$$

$$
\left(4 m^{2}+12 m-16\right) \div(2 m)
$$

$$
\left(-6 r^{3} t^{3}+4 r^{2} t^{2}-2 r t\right)\left(-2 r^{2} t^{2}\right)^{-1}
$$

$\left(-6 r^{3} t^{3}+4 r^{2} t^{2}-2 r t\right)\left(-2 r^{2} t^{2}\right)^{-1}$

43 Simplify $\frac{12 m^{12}-18 m^{6}+24 m^{2}}{6 m^{3}}$
A $\quad 2 m^{4}-3 m^{2}+4 m^{-1}$
B $\quad 2 m^{9}-3 m^{2}+4 m$
C $\quad 2 m^{9}-3 m^{3}+4 m^{-1}$
D $\quad 2 m^{9}-3 m^{3}+\frac{4}{m}$

44 Simplify $\quad(27 a b c+9 a b+10 a c)\left(6 a^{2} b c\right)^{-1}$
A $\frac{9}{2 a}+\frac{3}{2 a c}+\frac{5}{3 a b}$

B $-162 a^{3} b^{2} c^{2}-54 a^{3} b^{2} c-60 a^{3} b c^{2}$
C $-\frac{9}{2 a}-\frac{3}{2 a c}-\frac{5}{3 a b}$

D $\frac{9 a}{2}+\frac{3 a}{2 c}+\frac{5 a}{3 b}$

45 The set of polynomials is closed under division.

True

False

Long Division of Polynomials

To divide a polynomial by 2 or more terms, long division can be used.

Recall long division of numbers, such as $8693 \div 41$.

Here is an example:

$$
\begin{gathered}
x + 3 \longdiv { 2 x - 1 0 } \begin{array} { c }
{ \frac { 2 x ^ { 2 } - 4 x + 3 } { - \frac { 3 3 } { x + 3 } } } \\
{ \frac { - 2 x ^ { 2 } + - 6 x } { - 1 0 x } + 3 } \\
{ \frac { + 1 0 x + 3 0 } { 3 3 } }
\end{array}
\end{gathered}
$$

- Multiply
- Subtract
- Bring down
- Repeat
- Write Remainder over divisor

On the next several slides, we will break this down step by step....

Start by looking at the first terms. Think "what do I multiply by x to get $2 x^{2}$?"
(Or think " $2 x^{2} / x$ ")

$$
x + 3 \longdiv { 2 x ^ { 2 } - 4 x + 3 }
$$

Continue to next slide.

Next, multiply $2 x$ by $x+3$, and put the product under the dividend. Then subtract.

$$
\begin{gathered}
2 x \\
x + 3 \longdiv { 2 x ^ { 2 } - 4 x + 3 } \\
-\binom{)}{\hline}
\end{gathered}
$$

Continue to next slide.

Bring down the +3 . Repeat the whole process. This time, ask "what do I multiply by x to get -10x, or what is $-10 x / x$?"

$$
\begin{array}{r}
x + 3 \longdiv { 2 x } \begin{array} { r }
{ 2 x ^ { 2 } - 4 x + 3 } \\
{ - \frac { (2 x ^ { 2 } + 6 x) } { - 1 0 x } }
\end{array}
\end{array}
$$

Continue to next slide.

Multiply and subtract.

$$
\begin{array}{r}
x + 3 \longdiv { 2 x - 1 0 } \begin{array} { r }
{ \frac { (2 x ^ { 2 } - 4 x + 3 } { (2 x ^ { 2 } + 6 x) } } \\
{ - \frac { - 1 0 x } { } + 3 } \\
{ - \frac { (- 1 0 x - 3 0) } { 3 3 } }
\end{array}
\end{array}
$$

Since x doesn't divide into 33, we can't divide further.
33 is the remainder, which we write as a fraction.

$$
\begin{gathered}
x + 3 \longdiv { 2 x ^ { 2 } - 4 x + 3 } + \frac { 3 3 } { x + 3 } \\
\frac{-\left(2 x^{2}+6 x\right)}{-\frac{(-10 x}{}+3} \\
\frac{-10 x-30)}{33}
\end{gathered}
$$

Examples

$$
a - 1 \longdiv { 4 a ^ { 2 } + 3 a - 2 } \quad 2 a + 5 \longdiv { 6 a ^ { 2 } - 3 a + 2 }
$$

The Remainder Theorem

If a polynomial function $f(x)$, of degree ≥ 1, is divided by x - a, then the remainder is equal to $f(a)$.

Example: $f(x)=x^{4}+3 x^{3}-2 x^{2}+5 x+1$

$$
\text { Find } \frac{f(x)}{x-2}
$$

Complete the division, then calculate $f(2)$.

$$
x - 2 \longdiv { x ^ { 4 } + 3 x ^ { 3 } - 2 x ^ { 2 } + 5 x + 1 }
$$

Example: $f(m)=3 m^{3}+7 m^{2}-4 m+2$
Find the quotient of $\left(3 m^{3}+7 m^{2}-4 m+2\right) \div(m+2)$

Find $f(-2)$. What do you notice?

Example: In this example there are "missing terms". Fill in those terms with zero coefficients before dividing. Then find $\mathrm{f}(-1)$.

$$
f(t)=\left(4 t^{4}-2\right)(t+1)^{-1}
$$

click

Example

$$
\left(4 b^{3}-2 b+2\right) \div(2 b+4)
$$

46 Simplify. $\quad\left(x^{2}-3 x-41\right)(x+5)^{-1}$

$$
\begin{array}{ll}
\text { A } & x+10 \\
\text { B } & x-8-\frac{1}{x+5} \\
\text { C } & x-12 \\
\text { D } & x-12-\frac{2}{x+5}
\end{array}
$$

47 Simplify. $\quad\left(m^{2}-5 m+12\right) \div(m-1)$
A $m-2-\frac{4}{m-1}$
B $m-4+\frac{8}{m-1}$
C $\quad m-3$
D $m-3-\frac{4}{m-1}$

48 Divide. $\left(2 x^{2}+18 x+40\right) \div(x+5)$

A $2 x+8$
B $2 x+5+\frac{1}{x+5}$
C $2 x+4+\frac{1}{x+5}$
D $2 x+5-\frac{1}{x+5}$

49 Divide.

$$
\left(n^{3}-6 n-12\right) \div(n-4)
$$

50 Divide the polynomial.

$$
\left(2 x^{3}-3 x^{2}-5 x-12\right) \div(x-3)
$$

51 If $\left(x^{2}+3 x-26\right) \div(x+7)=x-4+\frac{2}{x+7}$,
what is $f(-7)$?

52 If $f(1)=0$ for the function, $f(x)=x^{3}+a x^{2}-4 x+3$, what is the value of a ?

53 If $f(3)=27$ for the function $f(x)=x^{3}+a x^{2}-4 x+3$ what is the value of a ?

