e and In

Return to
Table of
Contents

Basic Properties of Natural Logs

$\ln (m n)=\ln (m)+\ln (n)$
$\ln \left(\frac{m}{n}\right)=\ln (m)-\ln (n)$

$$
\ln 1=0
$$

$$
\ln e=1
$$

$$
\ln e^{y}=y
$$

$$
\ln \left(m^{n}\right)=n \ln (m)
$$

$$
e^{\ln x}=x
$$

e and In

The letter e represents a number that occurs quite often when dealing with exponential functions. It is a number used to model such things as the growth of a bacteria colony, the spread of an oil spill and even calculating compound interest.

Formally, e is defined to be:

$$
e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Simply, as a number:

$$
e=2.71818182 \ldots
$$

*e is an irrational number similar to pi in the sense that it will never repeat and never ends...

e and In

As with exponential functions, we can find the inverse of a function with base e. This is called The Natural Log and is noted:

$$
\log _{e} x=\ln x
$$

*Find $I n$ on your calculator. This is $\log _{\mathrm{e}}$.

e and In

The graphs of e and In are similar to our other functions.
The domain and range also remain the same.

Domain: $(-\infty, \infty)$
Range : $(0, \infty)$

Domain : $(0, \infty)$
Range : $(-\infty, \infty)$

e and In

e and natural logs have all of the same properties as other exponentials and logarithms.

For example:
$\ln \left(e^{7}\right)=7$

$$
e^{\ln 6}=6
$$

$\ln 1=0$
because
because
$\ln e^{y}=y$

$$
e^{\ln x}=x
$$

e and In

Write each of the following in the equivalent exponential or log form.
$\ln 10=x$
$e^{4}=5 x$

e and In

Rewrite each of the following as a single logarithm: $2 \ln x+3 \ln y$ $4 \ln x-3 \ln y+\ln z$

e and In

Expand the following logarithms:

$$
\ln \left(10 m^{4} n^{3}\right) \quad \ln \left(\frac{6 n^{4}}{m^{3}}\right)
$$

95 Rewrite as a single logarithm:

$\ln 6+\ln 4-3 \ln x$

A $\ln 24 x^{3}$
B $\ln \left(\frac{6}{4 x^{3}}\right)$
C $\frac{\ln 24}{\ln x^{3}}$
D $\ln \left(\frac{24}{x^{3}}\right)$

96 Expand the logarithm: $\ln \left(2 x^{7} y z^{4}\right)$

A $\ln 2+14 \ln x+2 \ln y+8 \ln z$
B $\ln 2+7 \ln x+\ln y+4 \ln z$
C $14 \ln x+2 \ln y+8 \ln z$
D $56 \ln x+56 \ln y+56 \ln z$

97 Expand the logarithm: $\ln \left(\frac{e m^{6}}{n^{4}}\right)$

A $24 \ln m-24 \ln n$
B $1+6 \ln m-4 \ln n$
C $e \ln m-4 \ln n$
D $6 \ln e+6 \ln m-4 \ln n$

98 Rewrite as a single logarithm:

$$
6 \ln a-4 \ln b-3 \ln c
$$

A $\ln \left(\frac{a^{6}}{b^{4} c^{3}}\right)$
C $\ln \left(\frac{1}{a^{6} b^{4} c^{3}}\right)$
B $\ln \left(\frac{a}{b^{4} c^{3}}\right)^{6}$
D $\ln a^{6} b^{4} c^{3}$

e and In

Solve the following equations:

$$
e^{x}=5
$$

$$
4 e^{3 x}=28
$$

e and In

Solve the following equations:

$$
\ln x=5
$$

$$
\ln (3 x)+\ln (2 x)=10
$$

99 Find the value of x.

$$
e^{\ln 5}=x
$$

100 Find the value of x.

$$
\ln e^{7}=x
$$

101 Find the value of x.

$$
e^{x+2}=6
$$

102 Find the value of x.

$$
5 e^{2 x+1}-2=8
$$

103 Find the value of x.

$$
\ln x=3
$$

104 Find the value of x.

$$
\frac{\ln x^{2}}{4}=5
$$

