POLYNOMIAL UNIT REVIEW

Multiple Choice

1. Simplify $(4+2 i)-(3-5 i)$
a. $7+7 i$
b. $1+7 i$
c. $7-3 i$
d. $1-3 i$
2. Simplify $(1-3 i)^{2}$
a. $1+9 i^{2}$
b. -8
c. $-8-6 i$
d. $10-6 i$
3. Simplify the following expression: $\left(\frac{6 p^{8} q^{9}}{\left(2 p^{3} q^{4}\right)^{3}}\right)^{-2}$
a. $\frac{3}{4 \mathrm{pq}^{3}}$
b. $\frac{9}{16 p^{2} q^{6}}$
C. $\frac{4 \mathrm{pq}^{3}}{3}$
d. $\frac{16 \mathrm{p}^{2} \mathrm{q}^{6}}{9}$
4. The sides of a rectangle are $\left(2 x^{2}-11 x+1\right) \mathrm{ft}$ and $(3 x-4) \mathrm{ft}$ find the perimeter of the rectangle.
a. $\left(2 x^{2}-8 x-3\right) f t$
b. $\left(4 x^{2}-16 x-6\right)$
c. $\left(5 x^{3}-11 x-3\right) f t$
d. $\left(6 x^{3}-41 x^{2}+47 x-4\right) \mathrm{ft}^{2}$
5. The sides of a rectangle are $\left(2 x^{2}-11 x+1\right) \mathrm{ft}$ and $(3 x-4) \mathrm{ft}$ find the area of the rectangle.
a. $\left(6 x^{3}-41 x^{2}-41 x-4\right) f t^{2}$
b. $\left(6 x^{3}-25 x^{2}+47 x-4\right) f t^{2}$
c. $\left(6 x^{3}-41 x^{2}+47 x-4\right) f t^{2}$
d. $\left(6 x^{3}-33 x-4\right) \mathrm{ft}^{2}$
6. A pool that is 10 ft by 20 ft is going to have a deck (x) ft added all the way around the pool. Write an expression in simplified form for the area of the deck.
a. $\left(60 \mathrm{x}+4 \mathrm{x}^{2}\right) \mathrm{ft}^{2}$
b. $\left(30 \mathrm{x}+\mathrm{x}^{2}\right) \mathrm{ft}^{2}$
c. $\left(200+60 \mathrm{x}+4 \mathrm{x}^{2}\right) \mathrm{ft}^{2}$
d. $\left(200+30 \mathrm{x}+\mathrm{x}^{2}\right) \mathrm{ft}^{2}$
7. What is the area of a square with sides $(6 x-2)$ inches?
a. $\left(36 x^{2}-4\right)$ in 2
b. $\left(36 x^{2}+4\right)$ in 2
c. $\left(36 x^{2}-12 x-4\right) \mathrm{in}^{2}$
d. $\left(36 x^{2}-24 x+4\right) i n^{2}$
8. $\frac{27 w^{3} x^{5}-12 w^{4} x^{3}+24 w^{3} x^{2}}{6 w^{2} x^{2}}$ is equivalent to which of the following?
a. $\frac{9 w x^{3}-4 w^{2} x+4 w}{3}$
b. $\frac{9 w x^{3}}{2}-2 w^{2} x+4 w$
c. $\frac{9 w x^{3}-4 w^{2} \mathrm{x}}{3}+4 \mathrm{w}$
d. $\frac{9 w x^{3}+4 w^{2} x+8 w}{2}$
9. $\left(2 a^{4}-6 a^{2}+4\right) \div(a-2)$
a. $2 a^{3}-3 a-2$
b. $2 a^{3}-3 a^{2}-2$
c. $2 a^{3}+4 a^{2}-2 a-4+\frac{-4}{a-2}$
d. $2 a^{3}+4 a^{2}+2 a+4+\frac{12}{a-2}$
10. A box has volume of $\left(3 x^{2}-2 x-5\right) \mathrm{cm}^{3}$ and a height of $(x+1) \mathrm{cm}$. Find the area of the base of the box.
a. $(3 x+2) \mathrm{cm}^{2}$
b. $(3 x-2) c m^{2}$
c. $(3 x+5) \mathrm{cm}^{2}$
d. $(3 x-5) c m^{2}$
11. Using the graph, decide if the following function has an odd or even degree and the sign of the lead coefficient.
a. odd degree; positive
b. odd degree; negative
c. even degree; positive
d. even degree; negative

12. Which of the following equations is of an odd-function?
a. $y=3 x^{5}-2 x$
b. $y=5 x^{7}-3 x^{3}+9$
c. $y=x^{5}\left(x^{7}+x^{5}\right)$
d. $y=7 x^{10}$
13. What value should A be in the table so that the function has 4 zeros?
a. -2
b. 0
c. 1
d. 3
14. Name all of the real and imaginary zeros and state their multiplicity:

$$
y=\left(x^{2}+8 x+16\right)\left(4 x^{2}+64\right)
$$

a. Real zeros: -4 with multiplicity 2; Imaginary zeros: $\pm 4 \mathrm{i}$ each with multiplicity 1
b. Real zeros: -4 with multiplicity 3 , 4 with multiplicity 1 ; No imaginary zeros
c. Real zeros: -4 with multiplicity 4 ; No imaginary zeros
d. Real zeros: -4 with multiplicity 2; Imaginary zeros: 2 i with multiplicity 2

Extended Response

1. Graph $y=(x+2)^{2}(x+1) x(x-1)(x-3)$.

Name the real zeros and their multiplicity.

2. Given the function $f(x)=3 x^{3}+3 x^{2}-6$. Write the function in factored form.
3. Name all of the real and imaginary zeros and state their multiplicity of the function

$$
f(x)=x^{3}-10 x^{2}+11 x+70
$$

4. Write a polynomial function of least degree with integral coefficients that has the given zeros.

$$
-4.5,-1,0,1,4.5
$$

5. Consider the graph of a degree 5 polynomial shown to the right, with x-intercepts $-4,-2,1,3$, and 5 .

Write an equation for a possible polynomial function that the graph represents.

