Adding and Subtracting Radicals

Return to
Table of
Contents

Adding and Subtracting Radicals

*Note: When adding or subtracting radicals, you do not add or subtract the radicands (the inside).

$$
\begin{array}{ll}
\text { Consider: } & \sqrt{4+9} \neq \sqrt{4}+\sqrt{9} \\
& \sqrt{13} \neq 2+3 \\
& \sqrt{13} \neq 5
\end{array}
$$

Adding and Subtracting Radicals

To add and subtract radicals they must be like terms.
Radicals are like terms if they have the same radicands and the same indexes.

Like Terms
$\sqrt{2}, \sqrt{2}$
$\sqrt{5}, 6 \sqrt{5}$
$\sqrt[3]{7}, 4 \sqrt[3]{7}$

Unlike Terms

$$
\begin{aligned}
& \sqrt{5}, \sqrt{3} \\
& \sqrt{2}, 2 \\
& \sqrt{10}, \sqrt[3]{10}
\end{aligned}
$$

Adding and Subtracting Radicals

An index indicates what root you are taking. Just like square roots undo squares, cube roots undo cubes, fourth roots undo powers of four, fifth roots undo powers of 5, etc... This concept will be studied more in depth later in the unit.

$$
\sqrt{2^{2}}=2 \quad \sqrt[3]{2^{3}}=2 \quad \sqrt[4]{2^{4}}=2 \quad \sqrt[5]{2^{5}}=2
$$

51 Identify all of the pairs of like terms:
A $\sqrt{2}, \sqrt{3}$
B $\sqrt{5,} 6 \sqrt{5}$
C $7 \sqrt{10}, 10 \sqrt{7}$
D $3 \sqrt{2}, \sqrt[3]{2}$
E $\sqrt[3]{5}, \sqrt[4]{5}$
F $4 \sqrt[5]{6}, 5 \sqrt[5]{6}$

Adding and Subtracting Radicals

To add or subtract radicals, only the coefficients of the like terms are combined - just like $3 x+4 x=7 x$.
$6 \sqrt{5}+3 \sqrt{5}$
$5 \sqrt{7}-4 \sqrt{7}$
$10 \sqrt{2}+10 \sqrt{3}$

Adding and Subtracting Radicals

Try...
$\sqrt{3}+\sqrt{3}$
$5 \sqrt{2}-6 \sqrt[3]{2}$
$4 \sqrt{3}+5 \sqrt{2}+6 \sqrt{3}$
$3 \sqrt{2}+4 \sqrt{2}-5 \sqrt{2}$

Adding and Subtracting Radicals

It is the same for expressions containing variables. Simplify:

$$
3 \sqrt{x}-4 \sqrt{x}+\sqrt{x}
$$

$$
10 \sqrt{p}-4 \sqrt{q}+3 \sqrt{p}
$$

52 Simplify: $4 \sqrt{11}+5 \sqrt{11}$
A $1 \sqrt{22}$
B $9 \sqrt{11}$
C $9 \sqrt{22}$
D Already Simplified

53 Simplify: $3 \sqrt{3}+2 \sqrt{2}$
A $5 \sqrt{6}$
B $5 \sqrt{5}$
C $6 \sqrt{6}$
D Already Simplified

54 Simplify: $6 \sqrt{7 x}-8 \sqrt{7 x}$
A $14 \sqrt{7 x}$
B $2 \sqrt{7 x}$
C $-2 \sqrt{7 x}$
D Already Simplified

55 Simplify: $6 x \sqrt{3}+5 x \sqrt{3}-2 x \sqrt{3}$
A $13 x \sqrt{3}$
B $9 x \sqrt{3}$
C $11 x \sqrt{3}-2 \sqrt{3}$
D Already Simplified

56 Simplify: $5 \sqrt{3 p}-4 \sqrt{2 p}-2 \sqrt{3 p}$
A $3 \sqrt{3 p}-4 \sqrt{2 p}$
B $3 \sqrt{3 p}$
C $10 \sqrt{3 p}-4 \sqrt{2 p}$
D Already Simplified

Adding and Subtracting Radicals

Some irrational radicals will not be like terms, but could be put in simplest radical form. In theses cases, simplify, then collect any like terms.

$$
\sqrt{12}-\sqrt{3}
$$

$$
\sqrt{8}+3 \sqrt{2}-5 \sqrt{24}
$$

Adding and Subtracting Radicals

The same goes for expressions containing variables. Try:

$$
4 x \sqrt{x^{3}}-2 x^{2} \sqrt{x}
$$

$$
7 y \sqrt{y}-9 \sqrt{y^{3}}
$$

57 Simplify: $\quad 2 \sqrt{3}+4 \sqrt{27}$

A $3 \sqrt{30}$
B $5 \sqrt{3}$
C $14 \sqrt{3}$
D Already in simplest form

58 Simplify: $5 \sqrt{8}-4 \sqrt{18}$
A $2 \sqrt{2}$
B $\sqrt{10}$
C $-2 \sqrt{2}$
D Already in simplest form

59 Simplify: $5 \sqrt{6 x^{2}}+3|x| \sqrt{12}-3|x| \sqrt{24}+4 \sqrt{3 x^{2}}$
A $7|x| \sqrt{3}+|x| \sqrt{6}$
B $10|x| \sqrt{3}-|x| \sqrt{6}$
C $8|x| \sqrt{3}$
D Already in simplest form

60 Simplify: $2 \sqrt{3}+4 \sqrt[3]{3}-3 \sqrt{2}$
A $4 \sqrt[3]{3}$
B $6 \sqrt{3}-3 \sqrt{2}$
C $3 \sqrt{3}$
D Already in simplest form

61 Simplify: $\sqrt{8 x^{3} y^{4}}+y^{2} \sqrt{128 x^{3}}-\sqrt{98 x^{3} y^{4}}-y^{2} \sqrt{12 x^{3}}$

A $x y^{2} \sqrt{2 x}$
B $3 x y^{2} \sqrt{2 x}-2 x y^{2} \sqrt{3 x}$
C $17 x y^{2} \sqrt{2 x}-2 x y^{2} \sqrt{3 x}$
D Already simplified

62 Simplify: $\sqrt{8 a^{4}}-3 \sqrt{2 a^{4}}+6 a \sqrt{32 a^{2}}$

A $5 a \sqrt{2 a}$
B $28 a \sqrt{2 a}$
C $23 a^{2} \sqrt{2}$
D Already simplified

Multiplying Radicals

Multiplying Radicals

When multiplying radicals, you may multiply radicands.

$$
\text { Consider... } \begin{aligned}
\sqrt{4} \cdot \sqrt{9} & =\sqrt{36} \\
2 \cdot 3 & =6
\end{aligned}
$$

Multiplying Radicals

Whole number times whole number and radical times radical. Never multiply a whole number and radical! Leave all answers in simplest radical form.

$$
(a \sqrt{b})(c \sqrt{d})=a c \sqrt{b d}
$$

$$
(3 \sqrt{5})(6 \sqrt{7}) \quad 4 x \sqrt{2}(7 x \sqrt{3})
$$

Multiplying Radicals

Examples:

$$
(-6 \sqrt{7})(\sqrt{10})
$$

$5(4 \sqrt{3})$

Multiplying Radicals

Examples:
$(5 \sqrt{2})(4 \sqrt{6}) \quad(10 \sqrt{7})(\sqrt{7}) \quad-3 \sqrt{10} \cdot 4 \sqrt{15} \quad\left(4 \sqrt{x^{2}}\right)\left(3 \sqrt{y^{3}}\right)$

63 Multiply: $(6 \sqrt{3})(8 \sqrt{7})$
A $14 \sqrt{10}$
B $48 \sqrt{21}$
C $42 \sqrt{24}$
D $24 \sqrt{42}$

64 Simplify: $(3 \sqrt{6})(2 \sqrt{2})$

$$
\begin{array}{ll}
\text { A } & 6 \sqrt{12} \\
\text { B } 12 \sqrt{6} \\
\text { C } 12 \sqrt{3} \\
\text { D } 6 \sqrt{2}
\end{array}
$$

65 Simplify: $(3 \sqrt{6})(2 \sqrt{3})$
A $6 \sqrt{18}$
B $18 \sqrt{6}$
C $6 \sqrt{2}$
D $18 \sqrt{2}$

66 Simplify: $\left(4 y \sqrt{x^{2}}\right)(-5 \sqrt{8})$
A $-20 x y \sqrt{8}$
B $-20|x y| \sqrt{8}$
C $-20|x| y \sqrt{8}$
D $-40|x| y \sqrt{2}$

67 Simplify: $(3 \sqrt{6})(6 \sqrt{5})$
A $18 \sqrt{30}$
B $36 \sqrt{15}$
C $54 \sqrt{10}$
D $108 \sqrt{5}$

Multiplying Polynomials with Radicals

Leave all answers in simplest radical form

$$
\begin{array}{lr}
5 \sqrt{3}(3 \sqrt{6}-4 \sqrt{5}) & (2+3 \sqrt{5})(3-4 \sqrt{2}) \\
(4+2 \sqrt{3})(4-2 \sqrt{3}) & (2+\sqrt{2})^{2}
\end{array}
$$

68 Multiply and write in simplest form: $9 \sqrt{3}(2-5 \sqrt{6})$

$$
\begin{array}{ll}
\text { A } & 9 \sqrt{6}-45 \sqrt{18} \\
\text { B } & 18 \sqrt{3}-45 \sqrt{18} \\
\text { C } & 18 \sqrt{3}-135 \sqrt{2} \\
\text { D } & 9 \sqrt{6}-135 \sqrt{2}
\end{array}
$$

69 Multiply and write in simplest form: $3 \sqrt{2}(4 \sqrt{2}-5 \sqrt{6})$

$$
\begin{array}{ll}
\text { A } & 12 \sqrt{2}-15 \sqrt{12} \\
\text { B } & 12 \sqrt{4}-15 \sqrt{12} \\
\text { C } & 24-15 \sqrt{12} \\
\text { D } & 24-30 \sqrt{2}
\end{array}
$$

70 Multiply and write in simplest form: $(2+4 \sqrt{3})(5+2 \sqrt{2})$
A $10+8 \sqrt{6}$
B $10+20 \sqrt{3}+4 \sqrt{2}+8 \sqrt{6}$
C $10+24 \sqrt{5}+8 \sqrt{6}$
D $10+32 \sqrt{11}$

71 Multiply and write in simplest form: $(3-4 \sqrt{2})(5+3 \sqrt{2})$

$$
\begin{array}{ll}
\text { A } & 15-12 \sqrt{2} \\
\text { B } & 15-7 \sqrt{2} \\
\text { C } & -9+12 \sqrt{2} \\
\text { D } & -9-11 \sqrt{2}
\end{array}
$$

72 Multiply and write in simplest form: $(1+6 \sqrt{5})^{2}$
A 181
B $181+14 \sqrt{5}$
C $1+36 \sqrt{5}$
D $181+12 \sqrt{5}$

Rationalizing the Denominator

Rationalizing the Denominator

Mathematicians don't like radicals in the denominators of fractions.
When there is one, the denominator is said to be irrational. The method used to rid the denominator is termed "rationalizing the denominator".

Which of these has a rational denominator?

Irrational Denominator

Rationalizing the Denominator

If the denominator is a monomial, to rationalize, just multiply top and bottom of the fraction by the root part of the denominator.
Examples:

$$
\begin{array}{llll}
\frac{5}{\sqrt{3}} & \frac{14}{5 \sqrt{7}} & \frac{4 \sqrt{2}}{3 \sqrt{5}} & \frac{2 \sqrt{3}}{\sqrt{6}}
\end{array}
$$

Rationalizing the Denominator

If a denominator is a binomial with a root, rationalize the denominator by multiplying top and bottom by finding itsconjugate. The conjugate of a binomial is found by negating the second term of a binomial.

Binomial:

$$
\begin{gathered}
4-2 \sqrt{5} \\
3+\sqrt{3} \\
1+4 \sqrt{2} \\
2-3 \sqrt{7}
\end{gathered}
$$

Conjugate:

$$
\begin{aligned}
& 4+2 \sqrt{5} \\
& 3-\sqrt{3} \\
& 1-4 \sqrt{2} \\
& 2+3 \sqrt{7}
\end{aligned}
$$

Rationalizing the Denominator

Multiplying by the conjugate turns an irrational number into a rational number.

Check out what happens...
$(3+\sqrt{3})(3-\sqrt{3})$
$(1+4 \sqrt{2})(1-4 \sqrt{2})$
$(2-3 \sqrt{7})(2+3 \sqrt{7})$

Rationalizing the Denominator

Do you see a pattern that let's us go from line 1 to line 3 directly?

Example

$(2-\sqrt{3})(2+\sqrt{3})$
$4+2 \sqrt{3}-2 \sqrt{3}-\sqrt{3^{2}}$
4-3
1

Example
$(4+\sqrt{5})(4-\sqrt{5})$
$16-4 \sqrt{5}+4 \sqrt{5}-\sqrt{5^{2}}$
16-5
11

Example
$(\sqrt{6}-\sqrt{7})(\sqrt{6}+\sqrt{7})$
$\sqrt{6^{2}}+\sqrt{42}-\sqrt{42}-\sqrt{7^{2}}$
6-7
-1

Rationalizing the Denominator

Use conjugates to rationalize the denominators:

$$
\frac{-5}{1-\sqrt{7}}
$$

$$
3
$$

$$
\overline{2+\sqrt{3}}
$$

Rationalizing the Denominator

Use conjugates to rationalize the denominators:

$$
\frac{2-\sqrt{3}}{4-3 \sqrt{2}}
$$

$$
\frac{5-2 \sqrt{6}}{3+4 \sqrt{6}}
$$

73 What is conjugate of $6-2 \sqrt{5}$?
A $6-2 \sqrt{5}$
B $6+2 \sqrt{5}$
C $-\sqrt{5}$
D $\sqrt{5}$

74 What is conjugate of $\sqrt{6}+\sqrt{5}$?
A $\sqrt{6}-\sqrt{5}$
B $\sqrt{6}+\sqrt{5}$
C $\quad-\sqrt{30}$
D $\sqrt{30}$

75 Simplify: $\frac{2}{\sqrt{3}}$
A $\frac{2 \sqrt{3}}{3}$
B $\frac{\sqrt{6}}{3}$
C $\sqrt{2}$
D Already simplified

$$
\begin{aligned}
& 76 \text { Simplify: } \frac{\sqrt{2}}{\sqrt{3}} \\
& \text { A } \frac{2}{3} \\
& \text { B } \frac{\sqrt{6}}{3} \\
& \text { C } \frac{2 \sqrt{3}}{3} \\
& \text { D Already simplified }
\end{aligned}
$$

77 Simplify: $\frac{\sqrt{2}}{3}$

$$
\begin{aligned}
& \text { A } \frac{2}{3} \\
& \text { B } \frac{\sqrt{6}}{3} \\
& \text { C } \frac{3 \sqrt{2}}{3}
\end{aligned}
$$

D Already simplified

78 Simplify: $\frac{\sqrt{2}}{3+\sqrt{2}}$

$$
\begin{aligned}
& \text { A } \frac{-2+3 \sqrt{2}}{5} \\
& \text { B } 3 \sqrt{2}-2 \\
& \text { C } \frac{-2+3 \sqrt{2}}{7} \\
& \text { D Already simplified }
\end{aligned}
$$

79 Simplify: $\frac{6-\sqrt{3}}{5+\sqrt{3}}$

$$
\begin{aligned}
& \text { A } \frac{30-6 \sqrt{3}}{22} \\
& \text { B } \frac{33-11 \sqrt{3}}{22} \\
& \text { C } \frac{3-\sqrt{3}}{28} \\
& \text { D Already simplified }
\end{aligned}
$$

80 Simplify: $\frac{3-4 \sqrt{2}}{1-3 \sqrt{2}}$
A $\frac{27-5 \sqrt{2}}{19}$
B $\frac{-21-13 \sqrt{2}}{-17}$
C $\frac{21-5 \sqrt{2}}{17}$
D Already simplified

81 Simplify: $\frac{2-\sqrt{3}}{1-\sqrt{3}}$

$$
\begin{aligned}
& \text { A } \frac{1+\sqrt{3}}{2} \\
& \text { B } \frac{1-\sqrt{3}}{2} \\
& \text { C }-\frac{\sqrt{3}}{2} \\
& \text { D Already simplified }
\end{aligned}
$$

Rationalizing $\mathbf{n}^{\text {th }}$ roots of Monomials

Remember that $\sqrt[n]{x^{n}}=x$, given an $\mathrm{n}^{\text {th }}$ root in the denominator, it will need to be rationalized. To rationalize, find the complement if the $\mathrm{n}^{\text {th }}$ root that will create a perfect root in the denominator. Multiply top and bottom by the complement. Simplify.

Examples:

$$
\frac{1}{\sqrt[5]{x^{3}}}
$$

$\sqrt[6]{\frac{4}{9}}$

Rationalizing $\mathbf{n}^{\text {th }}$ roots of Monomials

Try:

$$
\frac{\sqrt[7]{2 p^{4}}}{\sqrt[7]{p^{2}}} \quad \sqrt[5]{\frac{n^{4}}{4 m}}
$$

106 Rationalize: $\frac{1}{\sqrt[3]{2}}$
 A $\frac{\sqrt[3]{2}}{2}$
 B $\frac{\sqrt[3]{4}}{2}$
 C $\frac{\sqrt{2}}{2}$
 D $\sqrt[3]{4}$

107 Rationalize: $\frac{6}{\sqrt[4]{27}}$

$$
\begin{aligned}
& \text { A } \frac{6 \sqrt[4]{3}}{3} \\
& \text { B } \frac{2 \sqrt[4]{3}}{3} \\
& \text { C } 2 \sqrt{3} \\
& \text { D } 2 \sqrt[3]{3}
\end{aligned}
$$

108 Rationalize: $\frac{6}{\sqrt[5]{9 x^{4}}}$

$$
\begin{aligned}
& \text { A } \frac{\sqrt[5]{27 x}}{3 x} \\
& \text { B } \frac{2 \sqrt[5]{27 x}}{x} \\
& \text { C } 2 \sqrt{27 x} \\
& \text { D } 2 \sqrt[5]{27}
\end{aligned}
$$

109 Rationalize: $\frac{4}{\sqrt[3]{12}}$

$$
\begin{aligned}
& \text { A } \frac{\sqrt[3]{12}}{12} \\
& \text { B } \frac{\sqrt[3]{48}}{12} \\
& \text { C } \frac{2 \sqrt[3]{18}}{3} \\
& \text { D } \frac{\sqrt[3]{18}}{3}
\end{aligned}
$$

110 Simplify: $\sqrt[4]{\frac{2}{25}}$
A $\frac{\sqrt[4]{50}}{2}$
B $\sqrt[4]{25}$
C $\sqrt[4]{10}$
D $\frac{\sqrt[4]{50}}{5}$

111 Rationalize: $\frac{\sqrt[3]{5 x^{2}}}{\sqrt[3]{25 x}}$
A $\sqrt[3]{5 x}$
B $\frac{\sqrt[3]{25 x}}{5 x}$
C $\frac{x \sqrt[3]{25 x}}{5}$
D $\frac{\sqrt[3]{25 x}}{5}$

112 Simplify: $\sqrt[5]{\frac{x^{2}}{2 y^{3}}}$

$$
\begin{array}{ll}
\text { A } \frac{\sqrt[5]{16 x^{2} y^{2}}}{2 y} & \text { C } \frac{\sqrt[5]{8 x^{2} y^{2}}}{y} \\
\text { B } \frac{\sqrt[5]{x^{2} y^{2}}}{2 y} & \text { D } 4 \sqrt[5]{x^{2} y^{2}}
\end{array}
$$

