Rational Exponents

Return to
Table
of Contents

Rational Exponents

Rational exponents, or exponents that are fractions, are another way to write and work with radicals.

$$
\sqrt[n]{b^{m}}=b^{\frac{m}{n}}
$$

Rational Exponents

Simplify:
$(16)^{\frac{3}{4}}$
$(4)^{-\frac{5}{2}}$
$(81)^{\frac{3}{4}}$

Rational Exponents

Simplify:

$$
\left(\frac{1}{16}\right)^{-\frac{3}{4}}
$$

$$
\left(\frac{1}{8}\right)^{\frac{4}{3}}
$$

113 Simplify: $(81)^{\frac{1}{2}}$

114 Simplify: $(27)^{-\frac{2}{3}}$

115 Simplify: $\left(\frac{4}{9}\right)^{-\frac{3}{2}}$

116 Simplify: $\left(-\frac{1}{32}\right)^{-\frac{1}{5}}$

117 Simplify: $(-27)^{\frac{4}{3}}$

Rational Exponents

Rewrite each radical as a rational exponent in the lowest terms.

$\sqrt[4]{a^{2}}$
$\sqrt[3]{9 b^{5}}$

Rational Exponents

Rewrite each radical as a rational exponent in the lowest terms.

$\sqrt[6]{32 x^{8} y^{9}}$

Combining Radicals

Rewrite each expression as a single radical. To combine more than one number or variable, the roots must be the same.

$$
x^{\frac{2}{5}} \quad a^{\frac{1}{5}} b^{\frac{2}{5}} c^{\frac{4}{5}} \quad r^{\frac{2}{3}} s^{\frac{5}{3}}
$$

Combining Radicals

When the roots (denominators) are different, they must be made into a common number in order to create a single root.

$$
x^{\frac{3}{4}} y^{\frac{5}{8}}
$$

$$
r^{\frac{2}{5}} S^{\frac{8}{3}}
$$

$$
j^{\frac{1}{2}} k^{\frac{2}{3}} m^{\frac{1}{4}}
$$

118 Find the expression that is equivalent to: $\sqrt[4]{x^{3}}$
A $x^{\frac{3}{4}}$
B $x^{\frac{4}{3}}$
C x^{12}
D $x^{\frac{1}{12}}$

119 Find the simplified expression that is equivalent to: $\sqrt[4]{x^{2}}$
A $x^{\frac{2}{4}}$
B $x^{\frac{4}{2}}$
C $x^{\frac{1}{2}}$
D x^{2}

120 Find the simplified expression that is equivalent to: $\sqrt[3]{x^{2} y^{6}}$
A $x^{\frac{2}{3}} y^{\frac{6}{3}}$
B $x^{\frac{2}{3}} y^{\frac{3}{6}}$
C $x^{\frac{2}{3}} y^{2}$
D $x^{\frac{2}{3}} y^{\frac{1}{2}}$

121 Find the simplified expression that is equivalent to: $x^{\overline{5}}$
A $\sqrt[5]{x^{3}}$
B $\sqrt[3]{x^{5}}$
C $\sqrt{x^{15}}$
D $\sqrt[15]{x}$

122 Find the simplified expression that is equivalent to: $4 g^{\frac{1}{2}}$

> A $\sqrt{4 g}$
> В $4 \sqrt{g}$
> C $2 \sqrt{g}$
> D $\sqrt{2 g}$

123 Simplify: $\sqrt[3]{27 p^{10} q^{4}}$
A $3 p^{\frac{3}{10}} q^{\frac{3}{4}}$
B $3 p^{\frac{10}{3}} q^{\frac{4}{3}}$
C $27^{3} p^{\frac{3}{10}} q^{\frac{3}{4}}$
D $27 p^{\frac{10}{3}} q^{\frac{4}{3}}$

124 Write with rational exponents: $\sqrt[4]{8 x^{2} y^{6}}$
A $8^{\frac{3}{4}} x^{\frac{1}{2}} y^{\frac{3}{2}}$
B $2^{\frac{4}{3}} x^{2} y^{\frac{2}{3}}$
C $2 x^{\frac{1}{2} y^{\frac{3}{2}}}$
D $2^{\frac{3}{4}} x^{\frac{1}{2}} y^{\frac{3}{2}}$

125 Find the simplified expression that is equivalent to: $j^{\frac{1}{3}} h^{\frac{1}{6}} g^{\frac{1}{2}}$
A $\sqrt[6]{j^{2} h g^{3}}$
B $\sqrt[12]{j^{2} h g^{3}}$
C $\sqrt[6]{j^{4} h^{2} g^{6}}$
D $\sqrt[12]{j^{4} h^{2} g^{6}}$

126 Write the following with exponents: $\sqrt[6]{m^{5} n^{4} p^{3}}$
A $m^{\frac{5}{6}} n^{\frac{4}{6}} p^{\frac{1}{3}}$
B $m^{\frac{6}{5} n^{\frac{3}{2}}} p^{2}$
C $m^{\frac{5}{6}} n^{\frac{2}{6}} p^{\frac{1}{6}}$
D $m^{\frac{5}{6}} n^{\frac{2}{3}} p^{\frac{1}{2}}$

Rational Exponents

When working with rational exponents, follow exactly the same rules as when working with other exponents.

$$
\left(2 a^{\frac{1}{3}}\right)^{2} b^{\frac{1}{3}} b^{\frac{2}{3}} c^{-\frac{2}{3}}
$$

Rational Exponents

Just like other problems where you must rationalize denominators, mathematicians like to have a an integer power in the denominators.
Therefore, if there is a fractional exponent in the denominator after simplifying, rationalize the denominator.

$$
\left(a^{-\frac{3}{8}}\right)^{\frac{2}{9}}
$$

$$
\left(2 p^{\frac{4}{3}}\right)^{-2}
$$

127 Simplify: $\left(2 q^{\frac{1}{2}}\right)^{6}$
A $12 q^{6}$
B $\frac{64}{q^{12}}$
C $2 q^{\frac{1}{12}}$
D $64 q^{3}$

128 Simplify: $\left(m^{\frac{3}{2}}\right)\left(m^{\frac{1}{8}}\right)^{4}$
A $m^{\frac{12}{16}}$
B $m^{\frac{7}{10}}$
C $m^{\frac{3}{2}}$
D m^{2}

129 Simplify: $m^{-\frac{2}{3}}$

$$
\begin{aligned}
& \text { A } m^{\frac{1}{3}} \\
& \text { B } \quad-m^{\frac{2}{3}} \\
& \text { C } \frac{m^{\frac{1}{3}}}{m} \\
& \text { D }-\frac{m^{\frac{1}{3}}}{m}
\end{aligned}
$$

130 Simplify: $\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}} x^{\frac{1}{10}}}$

А $\begin{array}{ll}\frac{x^{\frac{8}{10}}}{x} & \text { C } \frac{x^{\frac{7}{5}}}{x} \\ \text { В } \frac{x^{\frac{3}{5}}}{x} & \text { D } \frac{x^{\frac{1}{5}}}{x^{\frac{6}{10}}}\end{array}$

131 Simplify and write as a radical: $\left(x^{\frac{3}{4}}\right)^{\frac{2}{3}}$
A \sqrt{x}
B $\sqrt[4]{x^{3}}$
C $\sqrt{x^{3}}$
D $\sqrt[3]{x^{2}}$

132 Simplify. Make sure your denominator is rational. $\left((16 m)^{-\frac{4}{5}}\right)^{\frac{11}{16}}$

$$
\begin{array}{ll}
\text { A } \frac{m^{\frac{1}{4}}}{8 m} & \text { C } \frac{8}{m^{\frac{3}{4}}} \\
\text { B } \frac{8 m^{\frac{1}{4}}}{m} & \text { D } 8 m^{\frac{3}{4}}
\end{array}
$$

