Return to Table of Contents

Rational exponents, or exponents that are fractions, are another way to write and work with radicals.

113 Simplify: $(81)^{\frac{1}{2}}$

114 Simplify: $(27)^{-\frac{2}{3}}$

116 Simplify:
$$\left(-\frac{1}{32}\right)^{-\frac{1}{5}}$$

117 Simplify: $(-27)^{\frac{4}{3}}$

Rewrite each radical as a rational exponent in the lowest terms.

Rewrite each radical as a rational exponent in the lowest terms.

Combining Radicals

Rewrite each expression as a single radical. To combine more than one number or variable, the roots must be the same.

$$x^{\frac{2}{5}} \qquad \qquad \frac{1}{a^{5}}b^{\frac{2}{5}}c^{\frac{4}{5}} \qquad \qquad \frac{2}{r^{3}}s^{\frac{5}{3}}$$

Teacher Notes

Combining Radicals

When the roots (denominators) are different, they must be made into a common number in order to create a single root.

$$\frac{3}{x^4}y^{\frac{5}{8}} \qquad \qquad \frac{2}{r^5}s^{\frac{8}{3}} \qquad \qquad \frac{1}{j^2}k^{\frac{2}{3}}m^{\frac{1}{4}}$$

Teacher Notes

118 Find the expression that is equivalent to: $\sqrt[4]{\chi^3}$

120 Find the simplified expression that is equivalent to: $\sqrt[3]{x^2y^6}$

- 121 Find the simplified expression that is equivalent to:
 - A $\sqrt[5]{x^3}$ B $\sqrt[3]{x^5}$ C $\sqrt{x^{15}}$ D $\sqrt[15]{x}$

 $\frac{3}{x^5}$

122 Find the simplified expression that is equivalent to: $4g^{\overline{2}}$

A
$$\sqrt{4g}$$

B $4\sqrt{g}$
C $2\sqrt{g}$
D $\sqrt{2g}$

123 Simplify: $\sqrt[3]{27p^{10}q^4}$

A
$$3p^{\frac{3}{10}}q^{\frac{3}{4}}$$

B $3p^{\frac{10}{3}}q^{\frac{4}{3}}$
C $27^{3}p^{\frac{3}{10}}q^{\frac{3}{4}}$
D $27p^{\frac{10}{3}}q^{\frac{4}{3}}$

124 Write with rational exponents: $\sqrt[4]{8x^2y^6}$

A
$$8^{\frac{3}{4}}x^{\frac{1}{2}}y^{\frac{3}{2}}$$

B $2^{\frac{4}{3}}x^{2}y^{\frac{2}{3}}$
C $2x^{\frac{1}{2}}y^{\frac{3}{2}}$
D $2^{\frac{3}{4}}x^{\frac{1}{2}}y^{\frac{3}{2}}$

125 Find the simplified expression that is equivalent to: $j^{\frac{1}{3}}h^{\frac{1}{6}}g^{\frac{1}{2}}$

A
$$\sqrt[6]{j^2 hg^3}$$

B $\sqrt[12]{j^2 hg^3}$
C $\sqrt[6]{j^4 h^2 g^6}$
D $\sqrt[12]{j^4 h^2 g^6}$

126 Write the following with exponents: $\sqrt[6]{m^5n^4p^3}$

A
$$m^{\frac{5}{6}}n^{\frac{4}{6}}p^{\frac{1}{3}}$$

B $m^{\frac{6}{5}}n^{\frac{3}{2}}p^{2}$
C $m^{\frac{5}{6}}n^{\frac{2}{6}}p^{\frac{1}{6}}$
D $m^{\frac{5}{6}}n^{\frac{2}{3}}p^{\frac{1}{2}}$

When working with rational exponents, follow exactly the same rules as when working with other exponents.

$$\left(2a^{\frac{1}{3}}\right)^{2} \qquad \qquad b^{\frac{1}{3}}b^{\frac{2}{3}} \qquad \qquad c^{-\frac{2}{3}}$$

Teacher Notes

Just like other problems where you must rationalize denominators, mathematicians like to have a an integer power in the denominators. Therefore, if there is a fractional exponent in the denominator after simplifying, rationalize the denominator.

$$\left(a^{-\frac{3}{8}}\right)^{\frac{2}{9}}$$

 $\left(2p^{\frac{4}{3}}\right)^{\frac{1}{2}}$

Teacher Notes

128 Simplify:
$$\binom{3}{2}\binom{1}{m^{\frac{1}{8}}}^{4}$$

A $m^{\frac{12}{16}}$
B $m^{\frac{7}{10}}$
C $m^{\frac{3}{2}}$
D m^{2}

129 Simplify:
$$m^{-\frac{2}{3}}$$

A $m^{\frac{1}{3}}$
B $-m^{\frac{2}{3}}$
C $\frac{m^{\frac{1}{3}}}{m}$
D $-\frac{m^{\frac{1}{3}}}{m}$

130 Simplify:
$$\frac{x^{\frac{1}{5}}}{x^{\frac{1}{2}}x^{\frac{1}{10}}}$$

A $\frac{x^{\frac{8}{10}}}{x}$ C $\frac{x^{\frac{7}{5}}}{x}$
B $\frac{x^{\frac{3}{5}}}{x}$ D $\frac{x^{\frac{1}{5}}}{x^{\frac{6}{10}}}$

