The Rational Zeros Theorem:
 Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

with integer coefficients. There is a limited number of possible roots or zeros.

- Integer zeros must be factors of the constant term, a_{0}.
- Rational zeros can be found by writing and simplifying fractions where the numerator is an integer factor of a_{0} and the denominator is an integer fraction of a_{n}.

RATIONAL ZEROS THEOREM

Make list of POTENTIAL rational zeros and test them out.

$$
3 x^{3}+4 x^{2}-5 x-2=0
$$

Potential List:

$$
\begin{aligned}
=\frac{ \pm \text { factors of constant term }}{ \pm \text { factors of lead coefficient }} & = \pm \frac{1}{1}, \pm \frac{2}{1}, \pm \frac{1}{3}, \pm \frac{2}{3} \\
& = \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}
\end{aligned}
$$

Hint: To check for zeros, first try the smaller integers -- they are easier to work with.

Using the Remainder Theorem, we find that 1 is a zero:

$$
3(1)^{3}+4(1)^{2}-5(1)-2=0
$$

therefore $(x-1)$ is a factor of the polynomial. Use POLYNOMIAL DIVISION to factor out.

$$
x-1 \sqrt{3 x^{2}+4 x^{2}+5 x+2}+5-5 x-2
$$

$$
\begin{gathered}
(x-1)\left(3 x^{2}+7 x+2\right)=0 \\
(x-1)=0 \text { or }(3 x+1)=0 \text { or }(x+2)= \\
x=1 \text { or } x=-\frac{1}{3} \text { or } x=-2
\end{gathered}
$$

This polynomial has three distinct real zeros: $-2,-1 / 3$, and 1 , each with a multiplicity of 1 .
There are no imaginary zeros.

Find the zeros using the Rational Zeros Theorem, showing the multiplicities, of the following polynomial.

$x^{3}+7 x^{2}+15 x+9=0$

Potential List:

$$
\begin{aligned}
=\frac{ \pm \text { factors of constant term }}{ \pm \text { factors of lead coefficient }} & = \pm \frac{3}{1} \\
& \pm \frac{9}{1} \\
& \pm \frac{1}{1} \\
& = \pm 3
\end{aligned}
$$

Hint: since all of the signs in the polynomial are +, only negative numbers will work. Try -3:

$$
(-3)^{3}+7(-3)^{2}+15(-3)+9=0
$$

-3 is a distinct zero, therefore $(x+3)$ is a factor. Use POLYNOMIAL DIVISION to factor out.

$$
x + 3 \longdiv { x ^ { 3 } + 7 x ^ { 2 } + 1 5 x + 9 }
$$

I

$$
\begin{gathered}
(x+3)\left(x^{2}+4 x+3\right)=0 \\
(x+3) \stackrel{ }{=} 0 \text { or }(x+3)=0 \text { or }(x+1)=0 \\
x=-3 \text { or } x=-3 \text { or } x=-1
\end{gathered}
$$

This polynomial has two distinct real zeros: -3 , and -1 .
-3 has a multiplicity of 2 (there are 2 factors of $x+3$).
-1 has a multiplicity of 1 .
There are no imaginary zeros.

111 Which of the following is a zero of

$$
2 x^{4}-9 x^{2}+7 ?
$$

A $x=-1$
$B x=1$
C $x=7$
D $x=-7$

112 Find the zeros of the polynomial equation, including multiplicities, using the Rational Zeros Theorem $x^{3}+x^{2}-5 x+3$.

A $x=1$, multiplicity 1
B $\mathrm{x}=1$, mulitplicity 2
C $x=1$, multiplicity 3
D $x=-3$, multiplicity 1
E $x=-3$, multiplicity 2
F x $=-3$, multiplicity 3

113 Find the zeros of the polynomial equation, including multiplicities, using the Rational Zeros Theorem $x^{3}+4 x^{2}+5 x+2$.

A $x=-2$, multiplicity 1
B $x=-2$, multiplicity 2
C $x=-2$, multiplicity 3
D $x=-1$, multiplicity 1
E $x=-1$, multiplicity 2
$F x=-1$, multiplicity 3

114 Find the zeros of the polynomial equation, including multiplicities, using the Rational Zeros Theorem

$$
6 x^{3}-17 x^{2}-4 x+3
$$

A $x=1$, multiplicity 1
E $\mathrm{x}=\frac{1}{3}$, multiplicity 1
B $x=-1$, multiplicity 1

C $x=3$, multiplicity 1
F $x=-\frac{1}{3}$, multiplicity 1
$\mathrm{G} x=\frac{1}{2}$, multiplicity 1
D $x=-3$, multiplicity 1
H $x=-\frac{1}{2}$, multiplicity 1

115 Use the Rational Zeros Theorem to find the zeros of the polynomial equation, including multiplicities.

$$
4 x^{4}-20 x^{3}+13 x^{2}+30 x+9=0
$$

A $x=3$, mulitplicity 1
B $x=2$, mulitplicity 2
C $x=3$, multiplicity 2
D $x=-2$, multiplicity 1
$\mathrm{Ex}=\frac{1}{2}$, multiplicity 1
F $\mathrm{x}=-\frac{1}{2}$, multiplicity 2

116 Find the zeros of the polynomial equation.

$$
x^{4}+7 x^{2}-18=0
$$

$$
\begin{aligned}
& A x=2 \\
& B \quad x=-2 \\
& C x=3 \\
& D x=-3 \\
& E x=3 i \\
& F x=-3 i \\
& G x=\sqrt{2} \\
& H \quad x=-\sqrt{2}
\end{aligned}
$$

