Factoring Summary

Before factoring any polynomial, write the polynomial in descending order of one of the variables.

1. Factor out the Greatest Common Factor (GCF). Look for this in every problem. This includes factoring out a -1 if it precedes the leading term.

$$
\text { Example: }-3 x^{2}+12 x-18=-3\left(x^{2}-4 x+6\right)
$$

2. If there are FOUR TERMS, try to factor by grouping (GR).

Example: $x^{3}+6 x^{2}-2 x-12$

$$
\begin{array}{ll}
\frac{x^{3}+6 x^{2}}{x^{2}(x+6)-2(x+6)}=-2 x-12 \\
(x+6)\left(x^{2}-2\right) & \text { group the first two terms, last two terms } \\
\text { factor out GCF from each grouping }
\end{array}
$$

3. If there are TWO TERMS, look for these patterns:
a. The difference of squares (DOS) factors into conjugate binomials:

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

111
248
$\begin{array}{lll}3 & 9 & 27\end{array}$
$4 \quad 16 \quad 64$
$\begin{array}{lll}5 & 25 & 125\end{array}$
$\begin{array}{lll}6 & 36 & 216\end{array}$
$\begin{array}{lll}7 & 49 & 343\end{array}$
$8 \quad 64512$
$9 \quad 81$
10100
11121
12144
13169
14196
15225

Example: $9 x^{4}-64 y^{2}=\left(3 x^{2}-8 y\right)\left(3 x^{2}+8 y\right)$
Note: a variable is a perfect square if the exponent is even
b. The sum of squares does not factor:
$a^{2}+b^{2}$ is prime
Example: $9 x^{4}+64 y^{2}$ is PRIME
c. The sum of cubes (SOC) or difference of cubes (DOC) factors by these patterns: each type contains a binomial (small bubble) times a trinomial (large bubble). Only the sign patterns differ between sum of cubes and difference of cubes.

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& \quad \text { Example }:\left(8 x^{3}+27\right)=(2 x+3)\left(4 x^{2}-6 x+9\right) \\
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& \quad \text { Example }:\left(64 x^{6}-125 y^{3}\right)=\left(4 x^{2}-5 y\right)\left(16 x^{4}+20 x^{2} y+25 y^{2}\right)
\end{aligned}
$$

Note: a variable is a perfect cube if the exponent is a multiple of three
4. If there are THREE TERMS, look for these patterns:
a. Quadratic trinomials of the form $a x^{2}+b x+c$ where $a=1(Q T a=1)$)factor into the product of two binomials (double bubble) where the factors of c must add to b .

Example: $x^{2}-4 x-12=(x-6)(x+2)$
b. Quadratic trinomials of the form $a x^{2}+b x+c$ where $a \neq 1(Q T \quad a \neq 1)$ eventually factor into the product of two binomials (double bubble), but you must first find the factors of $a c$ that add to b, rewrite the original replacing b with these factors of $a c$, then factor by grouping to finally get to the double bubble.

Example:

$9 x^{2}+15 x+4 \quad a c=(9)(4)=36$
factors of 36 that add to 15: 12 and 3

$$
\begin{aligned}
& 9 x^{2}+12 x+3 x+4= \\
& 3 x(3 x+4)+1(3 x+4)= \\
& (3 x+4)(3 x+1)
\end{aligned}
$$

c. Quadratic square trinomials ($Q S T$) of the form $a x^{2}+b x+c$ may factor into the square of a binomial. Look for the pattern where two of the terms are perfect squares, and the remaining term is twice the product of the square root of the squares:
$a^{2} \pm 2 a b \pm b^{2}=(a \pm b)^{2}$
Example: $16 x^{2}-40 x+25=(4 x-5)^{2}$
5. Factor all expressions completely. Sometimes, you will need to use two or three types of factoring in a single problem.

Example:

$$
\begin{array}{ll}
-2 x^{4}+32= & \text { factor out the GCF of }-2 \\
-2\left(x^{4}-16\right)= & \text { factor the difference of squares } \\
-2\left(x^{2}-4\right)\left(x^{2}+4\right)= & \text { factor the remaining difference of squares } \\
-2(x-2)(x+2)\left(x^{2}+4\right) & \text { (remember that the sum of squares is prime) }
\end{array}
$$

Factoring the Sum or Difference of Two Cubes

The Sum of Cubes Factoring Formula is:

$$
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)
$$

$$
\begin{aligned}
& \text { The Difference of Cubes Factoring Formula is: } \\
& \qquad x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)
\end{aligned}
$$

Factor: $8 a^{3}+b^{3}$

Factor: $8 a^{3}-b^{3}$

Factor: $8 a^{3}+27 b^{3}$

Factor: $64 x^{3}-27 y^{3}$

Factor: $24 a^{4}+3 a x^{3}$

Answers

Factor: $8 a^{3}+b^{3}$

We begin by rewriting each term as a cube and use the sum of cubes formula as a guide.

$$
\begin{gathered}
x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \\
(2 a)^{3}+(b)^{3}=(2 a+b)\left((2 a)^{2}-(2 a)(b)+(b)^{2}\right)
\end{gathered}
$$

So simplifying the right hand side we get:

$$
8 a^{3}+b^{3}=(2 a+b)\left(4 a^{2}-2 a b+b^{2}\right) \leftarrow \text { Answer }
$$

Factor: $8 a^{3}-b^{3}$

We begin by rewriting each term as a cube and use the difference of cubes formula as a guide.

$$
\begin{gathered}
x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \\
(2 a)^{3}-(b)^{3}=(2 a-b)\left((2 a)^{2}+(2 a)(b)+(b)^{2}\right)
\end{gathered}
$$

So simplifying the right hand side we get:

$$
8 a^{3}-b^{3}=(2 a-b)\left(4 a^{2}+2 a b+b^{2}\right) \leftarrow \text { Answer }
$$

Factor: $8 a^{3}+27 b^{3}$

We begin by rewriting each term as a cube and use the sum of cubes formula as a guide.

So simplifying the right hand side we get:

$$
8 a^{3}+27 b^{3}=(2 a+3 b)\left(4 a^{2}-6 a b+9 b^{2}\right) \leftarrow \text { Answer }
$$

Factor: $64 x^{3}-27 y^{3}$
We begin by rewriting each term as a cube and use the difference of cubes formula as a guide.

So simplifying the right hand side we get:

$$
64 x^{3}-27 y^{3}=(4 x-3 y)\left(16 x^{2}+12 x y+9 y^{2}\right) \leftarrow \text { Answer }
$$

Factor: $24 a^{4}+3 a x^{3}$
This problem doesn't even look like a sum or difference of cubes problem. However, there is a common factor in each of the two terms. It is $3 a$. So we can write:
$24 a^{4}+3 a x^{3}=3 a\left(8 a^{3}+x^{3}\right)$ Now notice that the factor in parentheses is a sum of two cubes and except for the x it is the same expression that was factored in the first exercise on this sheet. So we can write:
$24 a^{4}+3 a x^{3}=3 a\left(8 a^{3}+x^{3}\right)=3 a(2 a+x)\left(4 a^{2}-2 a x+x^{2}\right) \leftarrow$ Answer

