Solving Logarithmic Equations

Return to
Table of
Contents

Solving Logarithmic Equations

To solve a logarithmic equation, it needs to be written in one of the following forms:

$$
\log _{b} a=c
$$

*Once the equation is in this form, you may need to convert to exponential form.

$$
\log _{b} a=\log _{b} c
$$

*Once the equation is in this form, a and c must be equal. Therefore, you may remove the logarithms and solve.

Solving Logarithmic Equations

Before we solve, should we write this equation as a logarithm on one side or a logarithm on both sides?

$$
\log _{6}(x+2)+\log _{6}(3)=2
$$

Solving Logarithmic Equations

Solve: $\quad \log _{9}(r+3)-\log _{9}(r)=\log _{9}(r-1)$

Solving Logarithmic Equations

Caution!

Extraneous Solutions: Remember you cannot take a log of m when $m \leq 0$. ALWAYS check to see if your solution(s) satisfy the original equation.

Substitute the solutions $r=3$ and $r=-1$ into the equation to check for extraneous solutions:
$\log _{9}(r+3)-\log _{9} r=\log _{9}(r-1)$
$r=3$ yields a true equation
$r=-1$ yields the log of a negative number, and is therefore extraneous

86 Solve the following equation:

$$
2 \log _{3}(m)=4
$$

87 Solve the following equation:

$$
\log _{6}(m)+\log _{6}(m-5)=2
$$

88 Solve the following equation:
$\log _{m}(18)+\log _{m}(6)=4$

89 Solve the following equation:

$$
\log _{8}\left(n^{2}+n\right)-\log _{8}(n)=\log _{8}(3 n-1)
$$

90 Solve the following equation:

$$
\log _{8}(27)-2 \log _{8}(p)=\log _{8}(p)
$$

91 Solve the following equation:

$$
\log _{6}(t)-\frac{1}{3} \log _{6}(27)+\log _{6}(4 t)=0
$$

Solving Logarithmic Equations

How can we use these concepts to solve this equation?

$$
5^{a^{2}}=60^{a}
$$

Solving Logarithmic Equations

Try solving for $b: \quad 4^{b-2}=27^{b}$

92 Solve: $\quad 2^{3 m-2}=16^{m+3}$

93 Solve: $5^{2 x-3}=3^{6 x}$

94 Solve: $\quad 3^{x}=5^{5 x-3}$

