Return to Table of Contents

To solve a logarithmic equation, it needs to be written in one of the following forms:

$$\log_b a = c$$

*Once the equation is in this form, you may need to convert to exponential form. $\log_b a = \log_b c$

*Once the equation is in this form, a and c must be equal. Therefore, you may remove the logarithms and solve.

Before we solve, should we write this equation as a logarithm on one side or a logarithm on both sides?

$$\log_6\left(x+2\right) + \log_6\left(3\right) = 2$$

Solve: $\log_9(r+3) - \log_9(r) = \log_9(r-1)$

Caution!

Extraneous Solutions: Remember you cannot take a log of m when $m \le 0$. ALWAYS check to see if your solution(s) satisfy the original equation.

Substitute the solutions r = 3 and r = -1 into the equation to check for extraneous solutions:

$$\log_9(r+3) - \log_9 r = \log_9(r-1)$$

r = 3 yields a true equation r = -1 yields the log of a negative number, and is therefore extraneous

$$2\log_3(m) = 4$$

 $\log_6(m) + \log_6(m-5) = 2$

88 Solve the following equation: $\log_{m}(18) + \log_{m}(6) = 4$

$$\log_8(n^2 + n) - \log_8(n) = \log_8(3n - 1)$$

90 Solve the following equation: $log_8(27) - 2log_8(p) = log_8(p)$

$$\log_6(t) - \frac{1}{3}\log_6(27) + \log_6(4t) = 0$$

How can we use these concepts to solve this equation?

$$5^{a^2} = 60^a$$

Try solving for *b*: $4^{b-2} = 27^b$

•		
•		
•		
		•

92 Solve:
$$2^{3m-2} = 16^{m+3}$$

93 Solve:
$$5^{2x-3} = 3^{6x}$$

94 Solve:
$$3^x = 5^{5x-3}$$