Graph by Following Five Steps:

Step 1 - Find Axis of Symmetry
Step 2 - Find Vertex
Step 3 - Find y-intercept
Step 4 - Locate another point
Step 5 - Reflect and Connect

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 1: Find the Axis of Symmetry

> Recall the Formula: $x=\frac{-b}{2 a}$ $\mathrm{a}=3$ $\mathrm{~b}=-6$ $\mathrm{x}=\frac{-(-6)}{2(3)}=\frac{6}{6}=1$

Therefore, the axis of symmetry is $x=1$.

Graphing

Task: Graph $\mathrm{y}=3 \mathrm{x}^{2}-6 \mathrm{x}+1$

Step 2: To find the vertex, substitute $\frac{-b}{2 a}$ for x in the equation and find y.

$$
\begin{aligned}
& y=3 x^{2}-6 x+1 \\
& y=3(1)^{2}+-6(1)+1 \\
& y=3-6+1 \\
& y=-2 \\
& \text { Vertex }=(1,-2)
\end{aligned}
$$

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 3: Find the y-intercept.
The y-intercept occurs when $x=0$, so substitute zero for x in the equation.

$$
\begin{aligned}
& y=3 x^{2}-6 x+1 \\
& y=3(0)^{2}+-6(0)+1 \\
& y=0-0+1 \\
& y=1 \\
& y \text { intercept }=(0,1)
\end{aligned}
$$

Graphing

Task: Graph $y=3 x^{2}-6 x+1$
Step 4: Plot an additional point.
Choose an x-value to substitute into the function.

$$
\begin{aligned}
& \text { Using } x=-1 \\
& y=3 x^{2}-6 x+1 \\
& y=3(-1 f+-6(-1)+1 \\
& y=3+6+1 \\
& y=10 \\
& \text { point }=(-1,10)
\end{aligned}
$$

Graphing

$$
\text { Task: Graph } y=3 x^{2}-6 x+1
$$

Step 5: Using the axis of symmetry, reflect the points to get the other half of the parabola. Connect with a smooth curve.

9 What is the axis of symmetry for $\mathrm{y}=\mathrm{x}^{2}+2 \mathrm{x}-3$ (Step 1)?

$$
\begin{array}{ll}
\text { A } & x=1 \\
\text { B } & x=-1 \\
\text { C } & x=2 \\
\text { D } & x=-3
\end{array}
$$

10 What is the vertex for $y=x^{2}+2 x-3$ (Step 2)?

A (-1, -4)
B $(1,-4)$
C $(-1,-6)$
D $(1,-6)$

11 What is the y-intercept for $y=x^{2}+2 x-3$ (Step 3)?

$$
\begin{array}{ll}
\text { A } & (0,-3) \\
\text { B } & (0,3)
\end{array}
$$

Graph

Practice: Graph $y=2 x^{2}-6 x+4$

Graph

Practice: Graph $y=-x^{2}-4 x+5$

Graph

Practice: Graph $y=3 x^{2}-7$

Solve Quadratic Equations by Graphing

Return to
Table of
Contents

Solve by Graphing

When asked to solve a quadratic equation, there are several ways to do so.

One way to solve a quadratic equation in standard form is to find the zeros of the related function by graphing.

A zero is the point at which the parabola intersects the x -axis.
A quadratic function may have one, two or no zeros.

Solve by Graphing

How many zeros do the parabolas have? What are the values of the zeros?

Vocabulary

Every quadratic function has a related quadratic equation.
A quadratic equation is used to find the zeroes of a quadratic function. When a function intersects the x-axis its y-value is zero.

When writing a quadratic function as its related quadratic equation, you replace y with 0 .
So $y=0$.

$$
\begin{aligned}
& y=a x^{2}+b x+c \rightarrow \text { Quadratic Function } \\
& 0=a x^{2}+b x+c \\
& a x^{2}+b x+c=0 \rightarrow \text { Quadratic Equation }
\end{aligned}
$$

Solve by Graphing

One way to solve a quadratic equation in standard form is to find the zeros or x -intercepts of the related function.

Solve a quadratic equation by graphing:
Step 1 - Write the related function.

Step 2 - Graph the related function.

Step 3 - Find the zeros (or x-intercepts) of the related function.

Solve by Graphing

Step 1 - Write the Related Function

$$
\begin{aligned}
& 2 x^{2}-18=0 \\
& 2 x^{2}-18=y \\
& y=2 x^{2}+0 x-18
\end{aligned}
$$

Solve by Graphing

$$
\begin{aligned}
& \text { Step } 2 \text { - Graph the Function } \\
& \qquad y=2 x^{2}+0 x-18
\end{aligned}
$$

Use the same five-step process for graphing
The axis of symmetry is $x=0$.
The vertex is $(0,-18)$.
The y-intercept is $(0,-18)$.
Since the vertex is the y-intercept, locate two other points by substituting values for x. We'll use $(2,-10)$ and $(3,0)$
Graph these points and use reflection across the axis of symmetry. Connect all points with a smooth curve.

