Special Right Triangles

Return to Table of Contents

Trig Values of Special Angles

Recall in geometry the study of special cases of right triangles such as 30-60-90 and 45-45-90. The angles associated with these triangles occur frequently in trig, and so it is important to learn and remember the exact values of these functions.

Exact values are $\frac{\sqrt{3}}{2}$ and $\frac{\sqrt{2}}{2}$, as opposed to approximate values .8660 and .7071.)

50

Evaluating Trig Functions of 45°

Given a right triangle with one acute angle of 45° and hypotenuse length 1. Complete the triangle by giving the other angle and side lengths. Then find the values of each trig function.

(solution on next slide)

Evaluating Trig Functions of 45°

The other angle is also 45°. Because the acute angles are congruent, the legs are congruent. Let x represent the length of the legs.

$$x^{2} + x^{2} = 1^{2}$$
$$2x^{2} = 1$$
$$x^{2} = \frac{1}{2}$$
$$x = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

Evaluating Trig Functions of 30° and 60°

Given an equilateral triangle with side length 2. Complete the triangle by giving the other angle and side lengths. Then complete the trig values below.

Hint: Recall that the altitude bisects the base. So the length of half of the base is 1.

 $\sin 60^{\circ} = \cos 60^{\circ} = \tan 60^{\circ} =$ $\sin 30^{\circ} = \cos 30^{\circ} = \tan 30^{\circ} =$

Special Right Triangles

Example 1: Find the value of a.

6

Example 2: Find the values of b & c.

Answer

22 In simplest form, what is the value of f?

 $\begin{array}{c} B & 1 \\ C & \frac{\sqrt{2}}{2} \\ D & \frac{1}{\sqrt{2}} \end{array}$

A 0.5

Answer

23 What are the values of g and h?

A g = 0.5 and h =
$$\frac{\sqrt{3}}{2}$$

B g = $\frac{\sqrt{3}}{2}$ and h = 0.5
C g = $\frac{\sqrt{2}}{2}$ and h = 0.5
D g = 0.5 and h = $\frac{\sqrt{2}}{2}$

