Solve Quadratic Equations Using Square Roots

Return to
Table of
Contents

Solve Using Square Roots

Consider the following quadratic: $\quad x^{2}-64=0$
One option is to factor to solve for x .

$$
\begin{aligned}
& (x+8)(x-8)=0 \\
& x=-8 \quad x=8
\end{aligned}
$$

Because there is no "bx" term... another method to solve is using the square roots method.

To solve, move the constant, "c" to $\quad x^{2}-64=0$ the other side of the equation and $\quad x^{2}=64$ take the square root of each side.

$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{64} \\
& x=8 \quad x=-8
\end{aligned}
$$

IMPORTANT!! When taking the square root, you MUST consider both the positive and negative answer. Both $8{ }^{2}$ and $(-8)^{2}$ equal 64.

Solve Using Square Roots

You can solve a quadratic equation by the square root method if you can write it in the form:

$$
x^{2}=c
$$

If x and c are algebraic expressions, then:

$$
x=\sqrt{c} \quad x=-\sqrt{c}
$$

This can also be written as:

$$
x= \pm \sqrt{c}
$$

Solve Using Square Roots

What if x has a coefficient other than 1 ?
Example: Solve $4 \mathbb{K}=20$ using the square roots method.

26 When you take the square root of a real number, your answer will always be positive.

True

False

27 If $x^{2}=16$, then $x=$

A 4
B 2
C $\quad-2$
D 26
E -4

28 Solve $5 x^{2}=20$ using the square root method.

A	5	E	-5
B	20	F	2
C	4	G	-4
D	-2	H	-20

29 If $y^{2}=4$, then $y=$

A 4
B 2
C $\quad-2$
D 26
E -4

30 If $8 \mathbf{j}^{\mathbf{2}}=96$, then $\mathrm{j}=$

A $-3 \sqrt{2}$
B $-2 \sqrt{3}$
C $2 \sqrt{3}$
D $3 \sqrt{2}$
E ± 12

31 If $4 h^{2}-10=30$, then $h=$
A $-\sqrt{10}$
B $-2 \sqrt{5}$
C $2 \sqrt{5}$
D $\sqrt{10}$
E ± 10

32 If $(3 g-9)^{2}+7=43$, then $g=$
A 1
B $\frac{9-5 \sqrt{2}}{3}$
C $\frac{9+5 \sqrt{2}}{3}$
D 5
E ± 3

Solve Using Square Roots

Challenge: Solve $(2 x-1)^{2}=20$ using the square root method.

33 A physics teacher put a ball at the top of a ramp and let it roll toward the floor. The class determined that the height of the ball could be represented by the equation, $h=-16 t^{2}+4$, where the height, h, is measured in feet from the ground and time, \mathbf{t}, in seconds. Determine the time it takes the ball to reach the floor.

Problem is from:

engage ${ }^{\text {ny }}$

Click link for exact lesson.

34 A rock is dropped from a 1000 foot tower. The height of the rock as a function of time can be modeled by the equation: $h(t)=-16 t^{2}+1000$. How long does it take for the rock to reach the ground?

