Trigonometry of the Right Triangle

Return to Table of Contents

Trigonometry

Trigonometry means "measurement of triangles". In its earliest applications, it dealt with triangles and the relationships between the lengths of their sides and
the angles between those sides.
Historically trig was used for astronomy and geography, but it has been used for centuries in many other fields. Today, among many other fields, it has applications in music, financial market analysis, electronics, probability, biology, medicine, architecture, economics, engineering and game development.

Recall the Right Triangle

The sum of the measures of the angles is 180°.
The hypotenuse is the longest side and opposite the right angle. The other two sides are called legs.
In any right triangle, the Pythagorean Theorem tell us that:
leg $^{2}+$ leg $^{2}=$ hypotenuse ${ }^{2}$.

Pythagorean Triples

Pythagorean Triples (these are helpful to know)
A Pythagorean Triple is a set of "whole numbers", a, b and c that fits the rule:

$$
a^{2}+b^{2}=c^{2}
$$

Recognizing these numbers can save time and effort in solving trig problems.
Here are the first few:

$$
\begin{array}{cll}
3,4,5 & 5,12,13 & 7,24,25 \\
8,15,17 & 9,40,41 & 11,60,61
\end{array}
$$

Also, any multiple of a triple is another triple:
$6,8,10 \quad 10,24,26$ and so on

Similar Triangles

If the two acute angles of two right triangles are congruent, then the triangles are similar and the sides are proportional.

$$
\frac{a}{b}=\frac{d}{e}
$$

$$
\frac{a}{c}=\frac{d}{f}
$$

$$
\frac{b}{c}=\frac{e}{f}
$$

The ratios of the sides are the trig ratios.

Similar Triangles

If $\triangle A B C \sim \triangle D E F$, drag the measurements into the proportions:

$$
\frac{A B}{A C}=-\quad A C=\overline{D F} \quad A B=\overline{D F}
$$

$E F \quad D E \quad B C \quad E F \quad B C \quad D E$

Trigonometric Ratios

The fundamental trig ratios are:

> Sine abbreviated as "sin" (pronounced like "sign")

Cosine abbreviated as "cos", but pronounced "cosine"

Tangent abbreviated as "tan", but pronounced "tangent"

Greek letters like $\boldsymbol{\theta}$, "theta", and $\boldsymbol{\beta}$, "beta", are often used to represent angles. Uppercase letters are also used.
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ means "the sine of the angle θ " $\cos \theta$ means "the cosine of the angle θ " $\boldsymbol{t a n} \theta$ means "the tangent of the angle θ "

Trigonometric Ratios

In order to name the trig ratios, you need a reference angle, θ.

If θ is the reference angle, then

- the leg opposite θ is called the opposite side. (You have to cross the triangle to get to the opposite side.)
- the adjacent side is one of the sides of θ, but not the hypotenuse
- the side opposite the right angle is the hypotenuse

Trigonometric Ratios

opposite side
Notice what happens when θ is the other angle.

If the other angle is our reference angle θ, then the sides labeled as opposite and adjacent switch places.

The hypotenuse is always the hypotenuse.

Trigonometric Ratios

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{\text { opp }}{\text { hyp }} \\
& \cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }}=\frac{\text { adj }}{\text { hyp }}
\end{aligned}
$$

$$
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}=\frac{\text { opp }}{\text { adj }}
$$

opposite side

SOH-CAH-TOA: use this acronym to remember the trig ratios

For any right triangle with angle θ the ratios will be equal.

1 What is the ratio for $\sin \theta$?

2 What is the ratio for $\cos \theta$?

3 What is the ratio for $\tan \theta$?

14

4 What is the ratio for $\cos \theta ?$

14

Reciprocal Trig Functions

There are three more ratios that can be created comparing the sides of the triangle, cosecant (csc), secant (sec), and cotangent (cot):

opposite side

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{\text { hyp }}{\text { opp }}
$$

$$
\sec \theta=\frac{1}{\cos \theta}=\frac{\text { hypotenuse }}{\text { adjacent }}=\frac{\text { hyp }}{\text { adj }}
$$

$$
\cot \theta=\frac{1}{\tan \theta}=\frac{\text { adjacent }}{\text { opposite }}=\frac{\text { adj }}{\text { opp }}
$$

Evaluating Trig Functions

Example: Find the values of the six trig functions of θ in the triangle below.

Solution: Use the Pythagorean Theorem to find the missing side: $3^{2}+4^{2}=c^{2}$, so $c=5$.

$$
\begin{array}{ll}
\sin \theta=\frac{4}{5} & \csc \theta=\frac{\mathbf{5}}{\mathbf{4}} \\
\cos \theta=\frac{3}{5} & \sec \theta=\frac{5}{3} \\
\tan \theta=\frac{4}{3} & \cot \theta=\frac{3}{4}
\end{array}
$$

5 What is the ratio for $\sec \theta$?

12

6 What is the ratio for $\sin \theta$? Enter your answer in decimal form.

8.5

7 What is the ratio for $\cot \theta$?

8 What is the ratio for $\cot \theta$?

14

9 What is the ratio for $\csc \theta$?

14

10 What is the ratio for $\sec \theta$?

Using Trig Ratios

If you know the length of a side and the measure of one of the acute angles in a right triangle, you can use trig ratios to find the other sides.

Trigonometric Ratios

For example, let's find the length of side x .

The side we're looking for is opposite the given angle;
and the given length is the hypotenuse;
so we'll use the trig function that relates these two:

$$
\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{\text { opp }}{\text { hyp }}
$$

(continued on next slide)

Trigonometric Ratios

$\sin 30^{\circ}$ is always equal to the same number, regardless of the size of the triangle. To find the value of $\sin 30^{\circ}$, we can use a calculator that has trig functions.

$$
\begin{gathered}
\sin 30^{\circ}=0.5 \\
\text { so } x=7(0.5)=3.5
\end{gathered}
$$

NOTE: Be sure your calculator is set to degree mode.

Trigonometric Ratios

Example 2: Find the value of x.
The side we're looking for is adjacent to the given angle and the given length is the hypotenuse
so we'll use the trig function that relates these two:

$$
\cos \theta=\frac{\mathrm{adj}}{\mathrm{hyp}}
$$

click to reveal

Trigonometric Ratios

Example 3: Find the value of x.

We are looking for the opposite side, and are given the adjacent side.

The trig function that relates these is tangent:

$$
\tan \theta=\frac{o p p}{a d j}
$$

click to reveal

Trigonometric Ratios

Example: Find the value of x.

We are looking for the opposite side, and are given the hypotenuse.

The trig function that relates these is sine:

This time the x is on the bottom. To solve we would multiply both sides by x and then divide by $\sin 22^{\circ}$. (Remember this short cut: switch the x and the $\sin 22^{\circ}$.)

$$
\begin{aligned}
& \sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \\
& \sin 22^{\circ}=\frac{12}{\mathrm{x}} \\
& \mathrm{x}=\frac{12}{\sin 22^{\circ}} \quad \begin{array}{l}
\text { Enter this } \\
\text { into the } \\
\text { calculator }
\end{array}
\end{aligned}
$$

11 What is the value of x ?

12 What is the value of x ?

13 What is the value of x ?

14 What is the value of x ?

