Due: January 3, 2017

I. Factoring and expanding polynomials Factor the following polynomials:

Pactor the following polyholinals:
1.
$$15a^{3}b^{2} - 45a^{2}b^{3} - 60a^{2}b$$

2. $7x^{3}y^{3} + 21x^{2}y^{2} - 10x^{3}y^{2} - 30x^{2}y$
3. $6x^{4}y^{4} - 6x^{3}y^{2} + 8xy^{2} - 8$
4. $2x^{2} - 7xy + 6y^{2}$
5. $y^{4} + y^{2} - 6$
6. $7x^{3} + 56y^{3}$
7. $81r^{4} - 16s^{4}$
8. $(x + y)^{2} + 2(x + y) + 1$

Expand the following: $0 \quad (y + 1)(y - 1)(y - 2)$

9.
$$(x + 1)(x - 1)(x - 3)$$

10. $(2x + 3y)^2$
11. $(\sqrt{3}x + \sqrt{3})(\sqrt{6}x - \sqrt{6})$
12. $(x^2 - 2x + 3)^2$
13. $(x + 1)^5$
14. $(x - 1)^6$

II. Simplification of Rational Algebraic Expressions

Simplify the following. Assume all variables are larger than zero.

1.
$$3^{2}+5-\sqrt{4}+4^{0}$$

2. $9 \div 3 \cdot 5-8 \div 2+27$
3. $\sqrt{\frac{81}{x^{4}}}$
5. $\frac{6x-18}{3x^{2}+2x-8} \cdot \frac{12x-16}{4x-12}$

III. Solving Equations A. Linear

1.
$$3-2(x-1) = x - 10$$

2. $\frac{x}{2} - \frac{x}{7} = 1$
3. $y(y+2) = y^2 - 6$
4. $2[x - (1 - 3x)] = 3(x + 1)$

B. Quadratic & Polynomial

1.
$$\left(y - \frac{8}{3}\right)\left(y + \frac{2}{3}\right) = 0$$

2. $2x^3 - 4x^2 - 30x = 0$
3. $27x^3 = 1$

4.
$$(x-3)(x+6) = 9x + 22$$

5.
$$t^2 + t + 1 = 0$$

6.
$$3x^{3} = 24$$

7. $(x+1)^{2} + x^{2} = 25$
8. $5y^{2} - y = 1$

C. Rational

1.
$$\frac{1}{y-1} + \frac{2}{y+1} = 0$$

2. $\frac{2}{x-3} - \frac{3}{x+3} = \frac{12}{x^2 - 9}$
3. $\frac{1}{6-x} + \frac{2}{x+3} = \frac{5x}{x^2 - 3x - 18}$

E. Exponential

1.
$$10^{x} = 1000$$

2. $10^{3x+5} = 100$
3. $2^{x+1} = \frac{1}{8}$

4.
$$\frac{11}{x^2 - 25} - \frac{2}{x - 5} = \frac{1}{x + 5}$$

5.
$$\frac{1}{a} = \frac{-6}{a^2 + 5}$$

6.
$$\frac{-1}{x^2 - 3x} = \frac{1}{x} + \frac{x}{x - 3}$$

4.
$$3^{x^2}(9^x) = \frac{1}{3}$$

5. $2^{x^2}(4^{2x}) = \frac{1}{8}$

F. Logarithmic

- 1. $\log_2(x+5) = \log_2(1-5x)$
- 2. $2\log_3(x+1) = \log_3(4x)$
- 3. $\log_2(x+1) + \log_2(x-1) = 3$
- 4. $\ln x + \ln(2x+1) = 0$

5. $\ln x + \ln(x+2) = \ln 3$ 6. $3^{2x} = 4^{x+1}$

4. $\sqrt{x^2 + 9} + x + 1 = 0$ 5. $\sqrt[3]{3x + 2} + 4 = 6$ 6. $\sqrt[4]{w^2 + 7} = 2$

G. Radicals

- 1. $4\sqrt{2y-1} 2 = 0$
- 2. $\sqrt{2x+1} + 5 = 8$
- 3. $\sqrt{5x-1} 2\sqrt{x+1} = 0$

V. Lines & Regions

- 1. Find the x and y-intercepts, the slope, and graph 6x + 5y = 30.
- 2. Find the x and y-intercepts, the slope, and graph x = 3.
- 3. Find the x and y-intercepts, the slope, and graph y = -4.
- 4. Write in slope-intercept form the line that passes through the points (4, 6) and (-4, 2).
- 5. Write in slope-intercept form the line perpendicular to the graph of 4x y = -1 and containing the point (2, 3).
- 6. Graph the solution set of $x y \ge 2$.
- 7. Graph the solution set of -x + 3y < -6.

VII. Exponents and Radicals

Simplify. Assume all variables are >0. Rationalize the denominators when needed.

1.
$$\sqrt[3]{-8x^3}$$

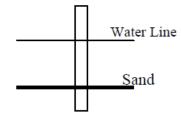
2. $5\sqrt{147} - 4\sqrt{48}$
3. $\sqrt{5}(\sqrt{15} - \sqrt{3})$
4. $\left(\frac{x^{\frac{2}{3}}y^{-\frac{4}{3}}}{x^{-\frac{5}{3}}}\right)^3$
5. $\sqrt[3]{\frac{40x^4}{y^9}}$
6. $\left(\frac{54a^{-6}b^2}{9a^{-3}b^8}\right)^3$
7. $\frac{\sqrt[3]{27a^3}}{\sqrt[3]{2a^2b^2}}$
8. $\frac{2}{\sqrt{5} - \sqrt{3}}$
9. $\frac{x}{\sqrt{x} + 3}$

VIII. Complex Numbers

Perform the indicated operation and simplify.

1.
$$\sqrt{-16} - 4\sqrt{-9}$$

2. $\sqrt{-16} \cdot \sqrt{-9}$
3. $\frac{\sqrt{-16}}{\sqrt{-9}}$


IX. Exponential Functions and Logarithms

- 1. Graph: $f(x) = 3^x + 1$
- 2. Graph: $g(x) = 2^{x-1}$
- 3. Express $8^{-2} = \frac{1}{64}$ in logarithmic form.
- 4. Express $\log_5 25 = 2$ in exponential form.
- 5. Solve: $\log_2 x = 4$

- 4. (4-3i)(4+3i)5. $(4-3i)^2$ 6. i^{25} 7. $\frac{3-2i}{4+5i}$
- 6. Solve: $\log_x 9 = 2$
- 7. Graph: $h(x) = \log_3 x$
- 8. Use the properties of logarithms to expand as much as possible: $\log_4 \frac{3}{y}$
- 9. How long will it take \$850 to be worth \$1,000 if it is invested at 12% interest compounded quarterly?

XI. Story Problems

- 1. Sam made \$10 more than twice what Pete earned in one month. If together they earned \$760, how much did each earn that month?
- 2. A woman burns up three times as many calories running as she does when walking the same distance. If she runs 2 miles and walks 5 miles to burn up a total of 770 calories, how many calories does she burn up while running 1 mile?
- 3. A pole is standing in a small lake. If one-sixth of the length of the pole is in the sand at the bottom of the lake, 25 ft are in the water, and two-thirds of the total length is in the air above the water, what is the length of the pole?

XIII. Sequence & Series

- 1. Write out the first four terms of the sequence whose general term is $a_n = 3n 2$.
- 2. Write out the first four terms of the sequence whose general term is $a_n = n^2 1$.
- 3. Write out the first four terms of the sequence whose general term is $a_n = 2^n + 1$.
- 4. Find the general term for the following sequence: 2, 5, 8, 11, 14, 17, ...
- 5. Find the general term for the following sequence: $4, 2, 1, \frac{1}{2}, \frac{1}{4}, \dots$
- 6. Find the sum: $\sum_{k=0}^{6} 2k 1$

7. Expand the following:
$$\sum_{k=0}^{4} \binom{4}{k} x^{k} y^{4-k}$$

XIV. Functions

Let f(x) = 2x + 9 and $g(x) = 16 - x^2$. Find the following. 1. f(-3) + g(2)2. f(5) - g(4)3. $f(-1) \cdot g(-2)$ 4. $\frac{f(5)}{g(5)}$ 5. $(g \circ f)(-2)$ 6. f(g(x))7. $f^{-1}(2)$ 8. $f(f^{-1}(3))$